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ABSTRACT 

Analysis of Differential Equations Applications  
from the Coordination Class Perspective 

Omar Antonio Naranjo Mayorga 
Department of Mathematics Education, BYU 

Master of Arts 

In recent years there has been an increasing interest in mathematics teaching and 
learning at undergraduate level. However, many fields are little explored; differential 
equations being one of these topics. In this study I use the theoretical framework of 
Coordination Classes to analyze how undergraduate mechanical engineering students apply 
their knowledge in the context of system dynamics and what resources and strategies they 
used; in this subject, students model dynamics systems based on Ordinary Differential 
Equations (ODEs). I applied three tasks in different contexts (Mechanical, Electrical and 
Fluid Systems) in order to identify what information was relevant for the students, readout 
strategies; what inferences students made with the relevant information, causal nets; and 
what strategies students used to apply their knowledge in those contexts, concept 
projections. I found that the core problem at projecting their knowledge relied on the causal 
nets, coinciding with diSessa and Wagner’s conjecture (2005). I also identified and 
characterized three strategies or concept projections students used in solving the tasks: 
Diagram-based approach, Component-based approach and Equation-based approach.  

Keywords: Coordination Class, Differential Equations, Transfer of Learning, Concept 
Projections
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CHAPTER 1: RATIONALE  

In this study, I intend to explore how students apply the concepts learned in ordinary 

differential equations (ODE) courses in the context of an advanced engineering subject, “System 

Dynamics”. In this chapter, I provide the justifications for carrying out this study as well as its 

importance for both the mathematics education and engineering education communities. 

First, I wish to speak of two separate, but related issues within mathematics education. On 

one hand, there has been a growing need for professionals in degrees related to Science, 

Technology, Engineering and Mathematics (STEM) to help in improving and maintaining the 

economic competitiveness of the U.S. with respect to technological and scientific capabilities 

(Matthews, 2007; Hall et al, 2011; NMS, 2014; Peters and Kortecamp, 2010). In fact, any 

country interested in keeping its industrial, scientific and economic pace has a commitment to 

promote the STEM structure that supports it. From the different fronts from which the STEM role 

can be strengthened, one is through focusing efforts on improving STEM instruction at all 

academic levels (PCAST, 2012). 

On the other hand, the educational problems faced by high school and college level 

students present various challenges for mathematics education researchers. Matthews (2007) 

emphasized the importance of making the necessary arrangements so that the parties involved 

(schools, universities, and governmental institutions, among others) pay special attention to the 

decline of students choosing STEM related programs at university level (Chen and Soldner, 

2013; NMS, 2014). Furthermore, Martinez and Sriraman (2015) also pointed at a fact that many 

of those who are currently doing STEM degrees face several challenges along the process and 

choose to leave. One of their findings involves the quality of mathematics instruction at 
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undergraduate and graduate level and how it might be one of the causes of STEM students’ 

attrition.  

In this way, on one hand there are STEM students’ attrition and the necessity of recruiting 

more students to study STEM related degrees for the reasons aforementioned. On the other hand, 

for years, there have been concerns about the teaching and learning process at university level. 

One of the reasons for this concern implies the need for preparing future engineers and scientists 

for today’s world’s challenges. Hence, research has turned its attention to this issue in recent 

decades. 

Several studies have addressed issues related to teaching and learning mathematics at the 

University level (Artigue, 1999; Peters and Kortecamp, 2010; Bergsten, 2007; Wainwright and 

Flick, 2007).  As the number of students attending universities increased, it was necessary to pay 

attention to educational issues at this level of mathematics. Studies at this level include: The 

conceptualization of calculus topics and the conciliation between what is taught at high school 

and what students should  “know” when starting college level mathematics (Pilgrim, 2014; 

Artigue, 1999); Notions and conceptions of limits (Shipman, 2012; Güçler, 2012), derivatives 

(Hashemi, et al, 2015; Orton, 1983), definite integrals (Jones, 2015a) , integrals of other kinds 

(Jones, 2015b), proof (Powers et al, 2010), differential equations (Soon et al, 2011; Rasmussen, 

2001), and linear algebra (Celik, 2015).  The amount of specific studies about mathematics at this 

level is evidence that there are significant issues that demand the attention of the mathematics 

education researchers, along with science and engineering education researchers. 

Of the undergraduate mathematics education foci, one emerging branch is concerned with 

connections between mathematics and other STEM disciplines, such as science and engineering. 

Furthermore, the European Society for Engineering Education (SEFI, 2013) issued a framework 
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for mathematics curricula in engineering education with the intention of making a contribution to 

the improvement and development of higher engineering education. Out of the several 

recommendations presented, the SEFI Mathematics group quoted Willcox and Bounova (2004):   

One of the major findings of this study was that the engineering faculty is unaware of the 

details of mathematics class curricula – they do not know specifically where and how 

mathematical concepts are taught. Likewise, for many concepts, mathematics faculty do 

not have a clear understanding of precisely how their downstream “customers” will use 

the skills they teach (Willcox and  Bounova, 2004, p. 9) 

This statement evidences a possible cause for the challenges that undergraduate 

engineering students face at using their mathematics knowledge when they deal with 

engineering-related tasks. As a consequence, this situation might generate a disconnect between 

mathematics and applied sciences. Eventually, the effects will likely be evidenced in the 

professional practice. This problem then, requires a concomitant effort from both engineering 

education and mathematics education researchers if we are to deal with this issue more 

efficiently. Booth (2008) addressed this issue of teaching and learning mathematics for an 

engineering context, thinking about a future “knowledge society” which he defines as the new 

societal paradigm that focuses its educational trend towards the necessities of our evolving 

society; that is, the paradigm has moved from a humanistic, then industrial to a now modern view 

that emphasizes creativity, resourcefulness, problem-solving skills among others. He presented 

the results of three studies that shed some light as to how mathematics are used and what the 

quality of their learning outcomes is, thinking about their future encounters with math-related 

science/engineering/technology subjects. As part of the conclusions, Booth presented the 

implications for the processes of teaching that provided the basis of students’ future skills and 
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how mathematics could be integrated in other aspects of their practice as students but also as 

future professionals. In summary, “knowledge capability” and preparation for working in the 

knowledge society comprise Booth’s conclusions. This implies that instruction should be aimed 

at preparing engineers to be able to use their skills in an ever-evolving society in part by taking 

their mathematical knowledge in their everyday contexts. 

The problem of strengthening the connection between mathematics and applied sciences 

can be seen from several points of view. Thus, it is important to illustrate a brief account of what 

has been done in this respect in order to provide a proper reasoning of the objective of the present 

study. Dray and Manogue (2004) pointed at the necessity of bridging the gap between 

mathematics and physical sciences at college level, they referred to the importance of a correct 

interpretation (and reconcile) symbolization to facilitate physics concepts understanding 

involving mathematical principles. Horwitz and Ebrahimpour (2002) reported on a two-year 

project including science and engineering projects in calculus (differential and integral) courses 

in which two calculus classes worked on a project-basis framework with the intention of 

achieving a stronger connection of the mathematical concepts and some contexts (engineering) in 

which these could be applied. Though not necessarily successful, the project was focused on 

making the connections more apparent. On the other hand, Pennell, et al., (2009) reported on a 

program that intended to reinforce the connection between the concepts of differential equations 

and the engineering practice. From among these lines of research, I will focus on how differential 

equations concepts are applied in novel contexts by undergraduate students, specifically, at the 

analysis of the application of differential equations concepts in engineering settings. 

There is a strong notion of how mathematics and physics-related –or engineering-  

subjects are interconnected, especially when it comes to interpreting notations or the way 
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physical ideas and concepts are mixed with the mathematics concepts. For example, the 

mechanics of materials engineering course (Hibbeler, 1997) has a high load of calculus concepts 

such as derivatives, rates of change, and integrals. There are also concepts from geometry and 

algebra, fluid mechanics (Fox, 2011), heat transfer (Incropera, 2007), thermodynamics (Çengel, 

2002) and system dynamics (Palm, 2005). In this way, mathematics becomes an essential element 

that enhances the understanding but it is not the only component needed to perform tasks in 

physics or advanced engineering/science topics. However, when a student cannot clearly 

understand certain critical mathematical concepts, he/she may find extreme difficulties going any 

further with engineering or science task involving mathematical concepts. This problem can also 

be given the other way around, that is, the lack of understanding of physical concepts may 

prevent the possibility to model real life situations using mathematical tools. Eventually this 

might become an issue for the prospective professional who needs to make use of as many tools 

as possible to be able to solve everyday problems at work. 

Taking into account the last paragraph, one might argue about the specific kind of 

knowledge that a professional – practicing – engineer should consider in his or her everyday 

practice. Ellis et al., (2004) made a survey among 96 engineers who responded to a varied set of 

questions regarding the (mathematical) conceptual understanding required of them at work, 

focused on calculus knowledge. In particular, 66% of the interviewees asserted that they were 

required to possess a conceptual understanding of differential equations. These results are 

remarkable for this study in particular, since there is emphasis on what concepts engineers require 

in their practice.  

With this in mind, I have noticed the importance of the instruction provided in differential 

equations courses and the influence it might exert on later settings where students are required to 



www.manaraa.com

 
 

6 
 

use concepts learned from this subject. While there have been several studies that analyze how 

students learn ODEs (Rassmussen, 2001; Arslan, 2009), what aspects influence this learning 

(Raychaudhuri, 2013), and alternative strategies to help them have a better understanding 

(Budinski, 2011; Rassmussen and Kwon, 2007; Savoye, 2009; Kwon, 2002), not much has been 

studied as for what happens afterwards; namely, how students apply or use the ODEs concepts in 

further stages of their instructions to become professionals. As it has been mentioned before, 

differential equations concepts are often used in certain settings of professional engineers and 

scientists so it is of great interest to dig into the complexities involving students transfer of 

learning from a mathematics education research perspective. 

The aforementioned studies provide a general perception of the concerns of researchers in 

understanding the challenges involving the use of ODEs for future professionals. However, 

within this intersection between mathematics and engineering education there are still gaps that 

need exploring. Thus, this master’s thesis is intended to answer the following research question: 

What knowledge resources and strategies do students use while setting up ODEs in these 

engineering contexts?  

Having personally graduated as a mechanical engineer, from my point of view I consider 

that being able to apply ODEs to engineering is a matter of great importance. I expect to find 

valuable information regarding the students’ process of thinking in transferring their knowledge. 

As such, this study can contribute to both the mathematics and engineering education 

community. 

With the purpose of providing answers to the research questions, the aim of this thesis 

entails choosing a specific engineering subject extensively connected with ODEs and analyzing 

the way that undergraduate engineering students apply those concepts to the novel context. This 
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novel context is System Dynamics, a subject that mechanical engineering undergraduates have to 

take usually a year or less before they graduate, so its relevance is evident as for assessing the 

preparation of the future professional engineering graduate. 
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CHAPTER 2: LITERATURE REVIEW 

Student Understanding of Differential Equations 

In this section, I review the undergraduate education research literature pertaining to the 

topic of differential equations. In particular, Rasmussen et al., (e.g., 2001, 2000), has conducted 

several important studies about students’ understandings and difficulties regarding ODEs. The 

objective for those studies was to explore the variety of ways by which elements, like content, 

instruction and technology, can foster student learning. At the same time introducing a 

framework within which researchers could be based to study the understanding, conceptualizing 

and application of ODEs concepts. 

Rasmussen’s (2001) framework presents two major themes: 1) functions-as-solutions 

dilemma and 2) Students’ intuitions and images. These themes are presented as a way to interpret 

students’ thinking. On the one hand, the first theme is divided into three subcategories: 1a) 

Interpreting solutions 1b) Interpreting equilibrium solutions and 1c) Focusing on quantities. 

These subsets can be interchangeably present at the moment a student is interpreting a system 

represented by a differential equation; that is, what seems relevant to the student in order to show 

his/her understanding. On the other hand, the second theme is also divided in three subtopics of 

understanding: 2a) Equilibrium solutions, 2b) Numerical approximations and 2c) Stability. 

The way students focused on the differential equations to interpret their solutions gave 

Rasmussen the resources to build his framework. In this way, his study might serve as a useful 

foundation to help understand how students in the present study might interpret the solution to 

the proposed exercises. However, there are two topics that might not be covered at this point: 1) 

Most of Rasmussen’s framework is based on first-order differential equations with only few 

mentions to second-order differential equations. In this respect, the present study might shed 
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some light as for alternative ways of students’ interpretations. On the other hand, 2) Rasmussen’s 

framework did not include how the context of the situation presented might influence the 

interpretation of the solution of the differential equation, which plays a fundamental role in the 

present study. 

Also, Hubbard (1994) listed several characteristics of an ODE that imply its 

understanding: 1) Understanding that the solution of a differential equation involves a function 

and not a number; in fact, many possible solutions (functions) depending on the conditions. 2) 

Present a description of how the solutions behave.  

A differential equation describes the evolution of a system. Mental pictures of a differential 

equation allow guesses about the system’s behavior. Also, there is a need to recognize the 

elements and how these affect the behavior of the system. For example, consider the non-

homogenous, second-order differential equation: 

i.e.: 0.1 	 	  

A discussion about this system might include the recognition of it being a damped, non-

linear pendulum, forced system. It could also include an explanation of what happens to the 

systems as the parameters change. For example, will forcing kick the bob over? What about the 

friction? Is friction large enough to eventually make it stop? 

Hubbard emphasizes on the necessity that the student communicates his/her findings or 

conjectures in terms of statements and not merely in terms of formulas or numbers. For example, 

how they describe the behavior of the system and what elements of the equation they use to 

support their reasoning. 

These are elements that facilitate a proper description of what the differential equation represents 

given a certain context. However, it is also necessary to take into account the requirements of the 
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System Dynamics course in order to complement the analysis of a system. Palm (2005) states that 

the objective of a system dynamics course entails the mathematical modeling and analysis of 

devices and processes so that we understand its time-dependent behavior. In other words, it is 

expected to predict the performance of a system as a function of time. 

Connections between Science/Engineering and Mathematics 

In this section, I address in more detail the literature regarding the connection between 

science/engineering and mathematics. For example, Redish (2005) described mathematics as an 

essential component for physics problem solving.  Indeed, Redish discussed the issue of what 

students thought they were doing while solving physics problem situations and how they applied 

or used mathematical concepts in contrast with what instructors expected them to be doing. For 

instance, when blending mathematics and physics, equations were interpreted in different ways 

which caused discrepancies in many cases in the end results. Thus, it may be that this idea can be 

extrapolated to other contexts, such as ODEs and its applications, revealing similar disparities. 

It is possible to illustrate this matter with the following example. The equations shown 

below describe a typical example of an ordinary differential equation. However, while equation 

(1) might be the usual representation of the differential equation in a mathematics context, it is 

possible to find representations like the one presented in equation (2) in settings such as 

engineering classes. Though it might be considered a simple issue, its implications have been 

described by Dray and Manogue in reference to ambiguous interpretations of mathematics and 

physics on the concept of functions and their use in physics as quantities (2004), and the way 

mathematicians, on one hand, and scientists and engineers, on the other, interpret vector calculus 

(2003). This issue suggests that the lack of understanding might prevent an appropriate 

application of the concepts taken from the mathematics practice, differential equations in 
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particular, or it might happen the other way around. That is, when applying physics or science 

concepts to set up mathematical models that will ultimately serve as tools to understand the 

behavior of dynamics systems involving differential equations. This leads to the question of how 

one’s mathematical background affect this transfer process as an undergraduate student explores 

engineering contexts involving the use of ODEs? What aspects (elements of previous knowledge) 

are relevant when he/she transfers such concepts in that novel (engineering) situation?  

0   (1) 

0   (2) 

Figure 1 shows a diagram that represents in brief the concepts that a student has to take 

into account in order to perform system dynamics tasks. There is a wide variety of concepts from 

the mathematics branch, calculus in particular, and these are mixed with knowledge from physics 

and introductory engineering courses. This flow diagram displays the correlation between ODEs 

and system dynamics and evidences the close connection between these two topics subject of the 

present study. 

 
 

Figure 1. Connection between physics, mathematics and system dynamics. 
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 In summary, Rasmussen and Hubbard have studied students’ understanding of ODEs 

concepts. The former established a framework to understand and categorize students’ thinking 

focused on the different ways students interpret differential equations; the latter argues on the 

necessity to establish aspects by which it is possible to evaluate whether a student actually 

understands the concepts implied in a differential equation. Redish on the other hand, addressed 

the use of mathematics in science/physics. In this study, I intend to explore students’ application 

of differential equations concepts to model engineering systems.  The applications of ODEs 

involve two parts: The first entails modeling a system by obtaining an expression (ODE) and the 

second part dealing with the understanding and process of finding the solutions of differential 

equations. Since the second part has been more heavily addressed, in this study I focus on the 

first part of the application process. 

 This first part of the process; that is, modelling of systems using differential 

equations, is a topic that seems to have been little explored in the literature of mathematics and 

engineering education. In this study I intend to delve into the process by which a student has to 

set up the differential equation that describes a system in different contexts. I expect to obtain 

relevant information that sheds light on this branch of mathematics that connects with 

engineering since we currently do not have much knowledge in this respect. In brief, the 

modelling process can be divided into three steps according to Blanchard (1998), (1) Establishing 

the rules or laws that describe the relationships between the quantities to be analyzed. (2) 

Defining the variables and parameters to be used in the model. (3) Using those relationships 

between quantities to obtain the desired equation(s), an ODE in this case. This study attempts to 

contribute to the existing literature by analyzing how students set up ODEs as they follow these 

steps. 
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CHAPTER 3: THEORETICAL FRAMEWORK 

Coordination Classes 

In this section, I present the construct of “coordination classes,” which is the theoretical 

lens I used to develop my study’s methods and my data analysis. I delve into its components and 

its relevant uses in studies that involve, or are based on, the transfer of learning perspective. I 

now refer to the origins of this theory. There have been a considerable number of studies related 

to the study of how concepts are developed in an individual; or conceptual change (Carey, 1988; 

Fodor, 1975; disessa & Sherin, 1998). Given its wide scope, diSessa and Sherin broke down their 

theory by making an effort to define the concept of “concept” itself. 

 

Figure 2. “Bird”and “Force”concepts.  

Here I explain how diSessa and Sherin (1998) discriminate “concepts” into different 

types. First, Figure 2, are images of a bird on the left and a man pushing a box on the right. In the 

first case, for the concept of a “bird,” in general, we have a common agreement for what counts 

as being a “bird,” as well as a possible list of features corresponding to a living thing known as 

“bird”. The reader might think of features such as: feathers, biped, hatching, and wings. This kind 

of “concept” is one that might easily evolve in a person’s mind and, this concept [they claim] 

corresponds to classifying membership into that concept category. In other words, the purpose of 
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the concept is to define membership into that concept. The evolution of that concept happens as 

the individual adds [or rejects] characteristics that make an entity “a bird”. 

The picture showing the man pushing the box might be interpreted as one in which there 

is a force involved – generated by the man – acting on the box being moved. This specific type of 

concept involves a more than a membership classification. In other words, the “force” concept is 

not necessarily just concerned with whether something belongs to the “force” concept, but is 

more concerned with obtaining information about the force. The force is not directly visible by 

an observer, unlike the bird that is directly visible, but must be inferred through related 

observation, such as the acceleration of the object. The concept of “force” can be classified in the 

type of concepts defined by diSessa and Sherin (1998) as coordination class. In this case, “force” 

does not necessarily have a given visual prototype like there might be one for the concept of 

“bird,” which helps distinguish whether an object is a bird or not. The purpose of the “force 

concept” is to determine information about the force, such as its direction and magnitude, rather 

than to identify whether a thing is or is not a “force.” This concept may consist of a collection of 

certain types (classes) of features and elemental pieces of knowledge that when properly 

coordinated comprise a coordination class concept. In this example, the concept of force is 

composed of other basic elements, which we use to get the desired information. From our 

knowledge of Newton’s laws we usually define force as the product of mass and acceleration, F 

= ma. Therefore, this concept coordinates three foundational concepts: (1) the mass of the box, 

which is the measure of inertia or opposition of that body to be moved; (2) multiplication which 

accounts for a successive summation of a given quantity; and (3) acceleration which is the rate of 

change of velocity with respect to time. By identifying those sub-elements that make up a force 

(mass and acceleration) we are spotting the fact that we need to measure a mass and a change of 
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velocity of a body in order to “find” the force acting on it, that is, how much force is being 

exerted on that body. 

Readout Strategies and Causal Nets 

A coordination class has a main function. It can be understood as a particular way in 

which people read information from the world, especially when it comes to abstract concepts in 

sciences, and use that information to infer about that abstract concept. There are two basic 

functions that together imply a coordination class: readout strategies and causal nets. These two 

elements entail the core of a coordination class. Readout strategies pertain to one’s ability to take 

information directly from the observable world and interpret, or “read,” that information in a 

useful way. In the case of the concept of force, a person can directly observe the size and 

heaviness of an object, as well as its motion and changing speed, but they are also required to use 

their abilities to “read” that information in order to interpret them as a mass and an acceleration.  

One must know how to “read” the relevant information from the real world in order to mentally 

use that information to deduce properties about the unseen force acting on the object. However, 

this person might not know how to coordinate these concepts so that a force might be recognized. 

For instance, they might not have the knowledge resource that relates mass and acceleration to 

force through Newton’s F = ma law.  

Thus, the second component to a coordination class, after the readout strategies, is the 

idea of a “causal net,” wherein knowledge elements are linked together in a way to help the 

individual obtain the desired properties of the concept in the form of inferences that are not 

necessarily ostensible in the situation under study. In the force example, the element F = ma can 

allow the student to take the information about mass and acceleration, obtained from their readout 

strategies, and use them to obtain the desired information about force. Other examples of causal 
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net elements might be that the direction of acceleration is the same as the direction of the force, 

or that multiple forces acting simultaneously only produce acceleration in a single direction 

determined by the sum of the forces. There may even need to be causal net elements that help the 

student know that size and heaviness of an object both feed into determining “mass,” which is 

then subsequently used in the F = ma causal net element to infer about force. In this last example, 

we can see that sometimes causal net elements may feed into further causal net elements, creating 

a true “web,” or “net” (as the name is meant to imply), of knowledge pieces. 

To further illustrate the ideas of readout strategies and causal nets, I give another example 

described by diSessa and Sherin (1998) drawing from a more familiar context.  Imagine a person 

that is purchasing a flight ticket to travel somewhere. If that person wants to know how long it 

takes for the plane to arrive at the destination, it is necessary to coordinate certain pieces of 

information that are printed on the ticket. A readout strategy may consist of the recognition of the 

departure and arrival times as important and relevant aspects to help him/her know the duration 

of the flight. However, the cognitive operation required to actually know how many hours the 

flight takes entails a further operation, invoking the causal net. In this example, the traveler 

knows that it is necessary to obtain the difference between the departure and arrival times to 

produce the flight duration. Also, the traveler should have knowledge about time zones which 

feed into their ability to correct calculate flight duration that passes through time zones. The 

person has to make a set of inferences from the readouts in order to convert that information into 

new information, the one that is required. That set of inferences is the causal net.  

Transfer, Span, and Concept Projection 

At the beginning of this section I mentioned that the coordination class theory is related to 

the process of transfer of learning. I now briefly define transfer of learning and its relation with 
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coordination class and then I discuss the elements that entail a coordination class. By the end of 

the section, I extend the relation between transfer and coordination class. 

Transfer of learning “entails the use (or reuse) of previous knowledge acquired in one 

situation (or class of situations) in a ’new’ situation (or class of situations)” (diSessa & Wagner 

2005, p. 122). Several studies have taken different approaches to transfer in an effort to show 

evidence of this phenomenon. However, given the fact that there are different types of transfer 

approaches, it is important to adopt a specific transfer lens that may be consistent with one’s 

guiding theory on knowledge. diSessa and Wagner (2005) have outlined a particular view of 

transfer that is compatible with the coordination class paradigm. Thus, naturally, it is this 

orientation toward transfer that I adopt for my study, and I describe this particular view in this 

section.  

In order to describe this transfer lens, there are more components of the coordination class 

theory to bring up and discuss. I use the concept of force once more to illustrate these additional 

constructs. First, suppose a student sees a spring compressed between a person’s two hands. It is 

possible that the student can conclude in this situation that there are enough elements to infer that 

the spring is exerting a force against the person’s hands. This is because he/she reads the relevant 

elements that entail the concept of force. That is, there is a mass, it is being moved by the spring 

and the student recognizes the physical law behind this “force” known as Hooke’s law. However, 

this same student might not recognize that if a body is submerged in a tank filled with water, this 

water is exerting a force that pushes this body toward the surface. In this way, the range of 

applicability of the concept is limited to one’s ability to recognize the existence of the concept in 

certain contexts. This range of “applicability” of the concept is known as span and it is developed 

as the learner accumulates experience and knowledge. 
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As the individual accumulates that experience and knowledge, all of these combine with 

the development of skills like intuition, creativity and resourcefulness, they eventually expand 

their span to include additional contexts. The way in which the coordination class theory 

evidences the expansion of the span is known as alignment. This means that the individual is able 

to recognize that the coordination class (the concept) works in the same way as it works in the 

previous situations that they experienced in the past. It is worth noting the fact that the theory of 

coordination class is also based on the Piagetian conception of knowledge construction 

(constructivism) since the individual scaffolds his/her knowledge upon previously acquired 

concepts. 

There is an important aspect to coordination classes that explains the process of span 

expansion and further alignment. diSessa (2004), and diSessa and Wagner (2005), describe the 

collection of strategies and knowledge elements used by the individual to implement the concept 

(coordination class) in particular contexts as a concept projection. If we think of the student who 

is able to recognize a force in the spring-mass system but cannot do so in the context of the body 

submerged in water, then it is possible to analyze and keep track of all the decisions, strategies, 

inferences and knowledge elements that this student might employ in one context versus another 

context  For example, the strategies and knowledge pieces used to reason about force in the 

spring context would consist of their concept projection of force in the spring context, and the 

potential strategies and knowledge pieces used to reason about force in the submerged object 

context would consist of their concept projection of force in the fluid context. 

To further illustrate the construct of “concept projection,” I give here an example within 

mathematics. To begin, consider the concept of the roots of a quadratic function, which is likely a 

coordination class concept because it deals with obtaining information in addition to the simple 
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categorization of something as a “root” or not. In general, students may be introduced to this 

topic by first being given a function in the factored form, such as: 

2 1  

In this case, the student “reads” each set of parentheses as a factor. They then use a causal 

net element to recognize that any factor has to be equal to zero to make f(x) = 0. Then they 

further employ a causal net element to produce a solution after setting each factor to zero. 

Consequently the roots or solutions of the equation (x+2)(x-1) = 0 are x = -2 and x = 1. The 

concept of “root” is put to work by these readouts and the causal net, which scaffold the strategy 

of setting each factor equal to zero. Thus, taken together, these readouts, causal net elements, and 

strategies form the concept projection of roots in the factored context. That combination of 

knowledge and strategies led him/her to project the root concept and work on this task. 

Now suppose the student sees another quadratic function, one that is not given in the 

factored form but in the standard form: 

2 5 

The student might first read the expression as a trinomial (whether they imagine that word 

or not), and then use a causal net element that associates trinomials with factoring. They might 

try to factor the trinomial and notice that it is not possible to use integers to change the expression 

to its factored form. After this realization, the student may switch strategy. They may invoke a 

separate causal net element that associates trinomials with the quadratic formula. This leads to the 

distinct strategy of using the quadratic formula to find the roots through the solutions to the 

equation 2 5 0. This separate set of readouts, causal net elements, and strategies 

makes up the concept projection of roots in the trinomial context. That is, in this case, the 

concept is projected by using this other strategy, the quadratic formula.  
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However, there might be cases when a student faces other types of equations of the form: 

2 	
1

3 0 

For the more expert eye, this exercise poses little problem because an expert has been able 

to use (or project) the concept in multiple situations and each context presents different 

characteristics that he/she manages to deal with without problems. This expert may use readouts 

and causal net elements that use the strategy that transforms this equation into a quadratic form 

for which either factoring or the quadratic formula can be used. A novice on the other hand, may 

lack the strategies or the tools to carry out the process of finding the solution(s) to this last 

equation, or they simply do not “see” how the concept can be applicable in this case. In other 

words there might be no projection in this case for a novice. 

 Concept projection can be thought of as the way coordination class theory views the 

transfer of learning. I have previously defined transfer as the application of previous knowledge 

in novel situations. From this perspective, it is then valid to use coordination classes and concept 

projections in an attempt to understand the transfer of learning when it comes to analyzing 

several science concepts such as force, mathematical and physical quantities, or certain theories 

and laws. 

Differential Equations and Coordination Classes 

I have made a description of coordination class theory and its relevance for the analysis of 

concept learning in sciences and mathematics. In this study I intend to analyze how students 

apply their knowledge of differential equations in the context of system dynamics from this 

perspective. One of the objectives in the system dynamics class for undergraduate mechanical 

engineers consists of the modeling of mechanical, electrical and fluid systems. This implies that 
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students are asked to determine the quantity to be studied and to obtain an expression (an ODE) 

that relates that quantity with its derivatives. In other words, they have to design a model that 

allows them to predict the system’s behavior with respect to time. In general, for this kind of 

systems, the expression to be obtained is an Ordinary Differential Equation (ODE).  

As described earlier, according to Blanchard et al (1998), the process of modeling consists 

of three steps. The first step entails establishing the rules or laws that describe the relationships 

between the quantities to be analyzed. The next step consists of defining the variables and 

parameters to be used in the model. The third step is using those relationships between quantities 

to obtain the desired equation(s), an ODE in this case. 

The way that we can obtain information from a system is then given by the proper 

modeling of it. Thus, coordination classes offer a suitable approach to analyzing the readout 

strategies, causal nets, and possible concept projections evidenced by a student attempting to 

work with differential equations in these engineering contexts. This is feasible especially because 

the setting I investigate involves students who are taking a system dynamics course and all of 

them have had the opportunity to take a differential equations course.  

Most of the equations obtained by the students when modeling different types of systems 

(mechanical, electrical and fluid, or a combination of these) follow the pattern of ordinary first or 

second order differential equations. These can be homogenous or non-homogenous and linear or 

non-linear. This engineering course excludes the use of partial differential equations because all 

of the systems to study are time-dependent only. In this way, students are likely to set up 

equations of the form. I describe this form, and how it relates to the contexts under investigation 

in this study, in the following chapter. 
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 CHAPTER 4: METHODS 

The arguments presented at the beginning of this study called for the necessity of 

continuing with research focused on finding elements that contribute to the strengthening of the 

teaching and learning process of mathematics in STEM contexts. As for this study, I emphasize 

that the connection between mathematics and science and/or engineering is a matter that requires 

attention from mathematics and engineering education as part of the potential solutions to 

improve the learning and teaching of mathematics and engineering at undergraduate level, 

promote STEM programs, deter students from detrition, among others.  

In this study I intend to answer the questions posed in the introduction regarding how 

students apply ODEs to engineering contexts involving system dynamics from a coordination 

class perspective. This perspective influenced the design of the instruments of data collection, 

organization and analysis. These are described in the following paragraphs. 

Participants 

The study included the participation of five undergraduate mechanical engineering 

students. The participants were taking the system dynamics class offered by the mechanical 

engineering department at the time of recruitment. These students had all already taken a 

differential equations course, as it is a prerequisite for the system dynamics class.  

In general, students at this stage are about to graduate and the topics they study during the 

system dynamics course are likely to become part of the professional practice for some of them. 

At this point of the program, the students have already taken the usual calculus series and also the 

series of fundamentals of physics, as well as the first two courses of applied mechanics, statics 

and dynamics, (see Figure 1 in the introduction). This helps to make sure that students have 

enough background for the tasks to be applied during the sessions. For this manuscript, the five 
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students have been given the pseudonyms, Zane, Kira, Harry, Rebecca and Josh. All of them 

were senior mechanical engineering undergraduates from a large university in the United States 

and were taking the system dynamics class during the time of the interviews and volunteered to 

take part of the study. They were chosen from among a group of 60 students based on their 

responses to an initial survey, which I now describe. In the next section, I describe the procedure 

for which I chose the participants in the study.  

Instruments 

 In this section I describe the instruments I used to collect the information. Then, I explain 

the process to choose the participants in the study and the tasks I assigned them during the 

sessions I interviewed them. When describing the tasks assigned to the students I also show how 

the tasks are solved and the aspects I took into account to be used during the data analysis stage 

of the study.   

The initial survey contained a set of questions regarding the student’s interpretation of the 

elements comprising ODEs, as well as a section where they expressed their willingness to 

participate in the study. I coordinated the administration of the survey with the professor in 

charge of the System Dynamics class one month before the end of the semester.  

The survey contained a set of six questions that asked the students to express what they 

knew and how much they knew and understood about ordinary differential equations (ODEs). 

The questions were focused on each of the elements of the ODE, including how they interpreted 

the second derivative of y (y’’), the first derivative of y (y’), the function y, what the constants a, 

b and c represent, and finally, what zero represents in the equation (see Figure 1). The reason 

behind choosing this specific differential equation is because that model is typical in System 

Dynamics settings. Thus, students will be reporting their knowledge about a differential equation 
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with which they should be acquainted at this stage of the study and, at the same time, one that is 

closely related to the exercises that the interviewees dealt with eventually.  

  

Figure 3. Preliminary survey. 

 

I expected to recruit the five participants in the following way. I wanted two of them to be 

students who would potentially show a high performance in solving the tasks, two of them to be 

at a “medium” level, and one more student who might have difficulties with the subject. With 

that in mind, I could have the possibility to find evidence for both advantages of certain strategies 

and possible difficulties associated with the students’ concept projections of ODEs in the system 

dynamics contexts.  
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Selection of Participants 

Two of the participants were chosen on the basis of the clarity and accurate explanation of 

the questions from the survey. These two students were able to give more details when answering 

question 1, for example. Both explained the whys beyond correctly identifying it as a second 

order linear homogeneous differential equation. These two students also provided clear 

understanding of the meaning of each of the elements of the ODE along with examples of 

applications in which these elements are used. In question 1 they explained that it is a second 

order differential equation because the highest derivative in the expression is a second derivative, 

that homogeneity implies that the ODE equals to zero which means that it has no forced input. In 

contrast, one of the students considered to have challenges with the concepts, only explained that 

it was a second order differential equation involving “two derivatives”. In question 5, they 

identified the constants as parameters that affect the system when they take different values. 

Also, from question 6, they showed understanding that when the equation is not equal to zero, 

there is an external element, in the form of a function that affects the system, also known as 

forced response.  

The other three participants had a fair understanding of what the differential equation was. 

They demonstrated reasonable understanding from part (a) of each question, but for part (b) they 

either lacked information about the representation of each element, or their response was actually 

irrelevant to the question. In the case of the student who I predicted to have a poor performance, 

the answers were short, inaccurate and/or irrelevant. This participant barely identified the 

elements of the ODE and showed little depth in the responses. For example, in question 6, this 

participant was limited in her response: “no input of force [if it equals to a value other than zero] 

turns it into a step or forced response”. In this case, this student immediately correlates the 



www.manaraa.com

 
 

26 
 

equation with a system of forces not showing evidence that these quantities could be of different 

nature, a limited applicability of the concept. We can compare it with the response of a high-

performing student who replied: “There is no forcing function of input… [if it equals to a value 

other than zero] the ODE has a forced response in addition to the free response”.  

As I analyzed the surveys, I selected ten students, divided in two groups, who satisfied the 

profiles described in the previous paragraph. One main group and the second acted as a backup. I 

contacted the participants through email and by phone and invited them to participate in two 45-

minute sessions approximately. One student from the main group did not reply so I picked the 

replacement from the back-up group. For the interviews, I used three tasks that were similar to 

exercises they had seen and done in their system dynamics class. In order to have various 

contexts to work with, I chose a mechanical system task, an electrical system task, and a fluid 

system task. The students were asked to set up a differential equation that modeled each of the 

systems. In order to provide the reader with a baseline of what each task involved, in the 

following subsections I describe each of the three tasks the students were given, as well as a 

complete “expert-view” solution of them.  

Description and Solution of Task 1 

 Figure 4 shows the first task given to the students in the interviews, which can be 

considered a fairly routine, though non-trivial, task for the students in this class. Here I give a 

conceptual analysis of this task. The pendulum’s swing will be affected by the elements 

connected to it. Furthermore, since it is a pendulum, those elements will make it rotate about the 

center of rotation shown between  and . This fact implies that the ODE will be generated 

from the summation of moments in the system, where a moment is the product of force times the 

distance from the center of rotation. A Free Body Diagram can be a useful tool to describe the 
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effect of each element in the system’s behavior. In Figure 5, the pendulum is influenced by three 

different forces produced by the elements in the system: the force caused by Spring 1(k1) on top, 

and force exerted by the Spring 2 (k2) and the damper (Fc). 

 

 
Figure 4. Task 1. (Taken from Palm, 2005, p. 244). 

 

Figure 5. Free body diagram of the pendulum. 
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The FBD can help one visualize the concept of summation of forces in a system yielding a 

resulting product of mass and acceleration. For this task, it is the product of the inertia and the 

angular acceleration, because there is a lever or pendulum rotates by the action of the elements 

connected to it. Hence, taking into account the inference made from the FBD and also making 

use of the Second Law of Newton (F = m∙ ) we can infer the following equation representing 

the governing principle in this task: 

∑  (1) 

In this equation, M stands for the moments contributing to swing the pendulum, I is the 

moment of inertia, and  is the angular acceleration. In general, it is expected that students are 

able to easily transfer the notion of ∑ , which entails systems where the mass shows a 

linear (straight line) displacement, to this particular situation where the resulting motion is 

rotational. In this case,  is analogous to m and  is analogous to . Also, in this case, one might 

start to recognize that this system is configured by a second order differential equation since  is 

the second derivative of the variable . This implies a mathematical aspect that could help the 

student in the process of modelling the system’s behavior. 

With equation (1) in mind, now we need to identify how all the components (or elements) 

affect the pendulum’s motion so that we obtain the requested expression. This system has three 

elements that will ultimately influence that motion: (1) k1, the spring on top of the picture, (2) k2, 

the spring shown at the bottom, and (3) c, the damper which makes up a parallel couple with k2. 

In this case, we might notice that the presence of a damper in the system implies a first derivative 

of motion (i.e. ) as well as the springs are related to the variable . This is another relevant 

mathematical aspect to take into account for the students to apply. 
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There are two important factors to notice at this point, before we move on to set up the 

differential equation. The first detail deals with the fact that, for this task,  is assumed to be 

small. This fact implies that we can also assume that sin , which will be useful for further 

stages of solving the task. The second factor implies the effect that the input y(t) poses on the 

system. Besides being the cause of the motion, it is necessary to note how it affects k2 and c’s 

behavior in the system. These two aspects are also related to the mathematical implications of the 

tasks given that the former entails an understanding of the behavior of small angles related to the 

trigonometric functions. On the other hand, the input function y(t) can lead the student to assume 

that he/she is dealing with a forced system, implying a non-homogenous ODE. All these 

implications are reflected in the equations shown in Table 1: 

Table 1 

Identification of components in the system and their effect on the system. 

Component Force Moment 

Spring k1 k1L1   

Spring k2 k2(L2   

Damper c c( )  

 

By taking into account the Second Law of Newton, the equation resulting from the action 

of the components indicated above, and based on (1), is shown below: 

  (2) 

Following a standard ODE setting up, equation (2) can be rearranged as follows in order to give a 

precise image of the ODE as recognized in the contexts of ODEs: 
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	 	   (3) 

 This expression contains the variable  and its derivatives, the coefficients are all constant 

and the right side of the equation shows the input function. This final expression for Task 1 is a 

non-homogenous linear second order differential equation.  

Description and Solution of Task 2 
 

 

Figure 6. Task 2. (Taken from Palm, 2005, p. 372). 

I now turn my attention to the second task given to the students in their interview (Figure 

6), involving electrical systems the students were required to work with in the systems dynamics 

class. I note that this particular task was the most difficult, and was used in order to see how 

students might work with a rather challenging context. In this task, similar to Task 1, we might 

notice that the voltage  is affected by the influence of three elements: the capacitor (C), the 

inductance (L) and the resistor (R). The current  “flows” through the circuit and it does because 

of the potential difference known as voltage. This voltage changes (decreases) as the current 

passes through each of the elements of the circuit. It decreases until it reaches a value of 0. This 
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fact indicates that the measure of the voltage will be different depending on where the measure is 

taken. 

On the other hand, from the Kirchhoff’s Law of Current (KCL) we know that, at a given 

node1 the current going to the node is equal to the current flowing out of it. The following 

equation indicates how the KCL works for this circuit. Given the node located at the point where 

 is, we have: 

 (4) 

Also, from Ohm’s law, we know can define  as follows: 

 or  (5) 

We need to analyze and define the effect of the other two elements involved in the circuit. 

In equation (5) we have already described the effect of the resistance on the system. Now we 

describe the influence of the capacitor (C) on the system: 

  (6) 

From equations (4) and (5) we can rearrange equation (6) as follows: 

 (7) 

This is a significant aspect to take into account, mathematically speaking, given that this 

term is part of the final expression. A student should be able to recognize that although this term 

involves the variable to model, , it is necessary to derive it so that we eventually obtain the 

ODE we are look for. 

                                                 
1 A node is a point on the circuit where two or more elements meet. 
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The following is a key step in the solution of the task. It involves the analysis and 

description of the effect of the inductance (L) in the circuit, but also, it involves the other two 

elements analyzed and thus, it allows obtaining the ODE. 

The effect of the inductance only, is given by the difference of voltage . In other 

words, we have: 

 (8) 

Now, we are going to rearrange equation (8) as follows: 

  and, 

	  then,   

 So we have: 

1
 

 At this point, we have identified three terms containing . However, in order to obtain an 

expression of the form: 0	 	 , as mentioned earlier, we must derive on 

both sides of the equation, thus: 

1
 

or 

 

Finally, multiplying by CR, we have: 
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 Similar to Task 1, we have obtained a linear second order differential equation with 

constant coefficients. There is an input function, is, acting as the input function so this is a non-

homogenous ODE.  

Description and Solution of Task 3. 
 

 

Figure 7. Task 3. (Taken from Palm, 2005, p. 397-398) 

I now discuss the third, and final, task given to the students during their interviews. I note 

that this task, which involves a fluid context, was the easiest and was given to see how students 

might work with a fairly uncomplicated context. This task requires the analysis of the section of 

the tank that encompasses the height h, which is the magnitude of interest. In this way, the 

volume of the tank in this section is given by the expression: . This volume V will vary 

depending on the input and output flow (  and the orifice at L, respectively). The variation of 

the volume (or rate of change) is given by the expression , or the derivative of V, thus we have: 
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 This first aspect of the task entails the recognition of related rates of change, an important 

topic in calculus. On the other hand, by determining the rate of change of the volume, we came 

up with a derivative of the variable we are analyzing.   

 We can adapt Bernoulli’s equation to this tank situation. The Bernoulli’s principle 

considers the conservation of energy in fluid systems. In brief, the rate of change of the volume 

of volume flowrate is equal to the difference of the input and output flowrate: 

	  (9) 

From equation (9) we know we are close to obtain the model for h. The only term to 

define is  which relates the volume flowrate at the orifice at L. 

2  (10) 

Where  is the discharge coefficient for the orifice,  is the area of the orifice 

and g is the gravity constant. 

Now equation (9) can be rewritten as follows: 

	 2  (11) 

 In this case we have obtained a non-linear first-order differential equation given that the 

variable h is raised to the ½ power. At this point, students are not required to know the processes 

to solve this kind of equations; however, they are expected to understand and recognize the 

elements that make up this type of ODE.  
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Potential Readouts and Causal Nets 

 Now that I have presented an expert’s version of how the tasks could be solved, I provide 

a list of likely readout strategies and causal net elements needed to solve each of the tasks. I 

conceptualized of this list before performing the analysis, in order to have specific items to look 

for during analysis, though, of course, I left open the possibility of detecting additional readouts 

and causal net elements as well. In Table 2. I present the potential readouts strategies and causal 

net elements of each task, one at a time. I give the symbols likely to be associated with the 

readout or causal net element, the interpretation or association for each, and the code I use for 

ease in referring to these readouts and causal net elements in the results section. This list of 

readouts and causal nets for each of the tasks was contrasted with the work done by the students 

and analyzed matches as well as missing aspects in their work compared with the expert’s solved 

tasks.  

Table 2.  

List of potential readouts for task 1. 

 

Task element Possible readout Code

y 
Input function that makes the system (pendulum) 

to experience motion (Useful to obtain the 
expression to model the system behavior).  

T1RO01

k2 
Spring 2 constant (To calculate the force and 
eventually, the moment caused by spring 2) 

T1RO02

c 
Damping constant (To calculate the force, and 

eventually, moment caused by the damper) 

T1RO03

L2 
Distance from the point of rotation of the lever 

(pendulum) (To calculate the moment caused by 
the elements attached to that end) 

T1RO04

 
Amplitude of the pendulum caused by the elements 

of the system. This is the variable that represents 
the output (t) 

T1RO05
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L1 
Distance from the point of rotation of the lever 

(pendulum) (To calculate the moment caused by 
the elements attached to that end) 

T1RO06

k1 
Spring 1 constant (To calculate the force and 
eventually, the moment caused by spring 1) 

T1RO07

Small   
Indication that the amplitude of rotation is so small 

that one can infer sin  

T1RO08

Input y(t) 
Input function that makes the system (pendulum) 

to experience motion (Useful to obtain the 
expression to model the system behavior) 

T1RO09

Output (t) 
Function of interest. The ODE to obtain represents 

the behavior of the motion of the pendulum 

T1RO10

Equilibrium y=	 =0 When y = 0,  = 0 too.  T1RO11

Pendulum (bar/lever) 
Indicates that the system has a second derivative of 

 and includes the moment of inertia “I” 

T1RO12

Following is a list of potential causal nets that a student might come up with as he/she 

solved Task 1. These were also contrasted and compared with the work done by the students and 

identify potential gaps and difficulties. 

Table 3. 

 List of potential causal nets for Task 1. 

 

Elements identified 
from the readouts Possible causal net element Code 

y /  (highlighted) 

This variable represents the input function (or 
magnitude) that affects the system and ultimately has an 

effect on . It only acts on the subsystem ( , ) 

 

 

T1CN01

k2 

Spring 2 constant is used to calculate the force and 
eventually moment caused by that spring.  

 

T1CN02

c Damping constant is used to calculate the force and T1CN03
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eventual moment caused by the damper 

 

It also indicates the existence of a first derivative 

L2 
Distance from the point of rotation of the lever 

(pendulum), it is part of the calculation of the moments 
generated by the damper and spring 2 

T1CN04

L1 
Distance from the point of rotation of the lever 

(pendulum), it is part of the calculation of the moment 
generated by the spring 1 

T1CN05

k1 

Spring 1 constant is used to calculate the force and 
eventually moment caused by that spring.  

 

T1CN06

 
It indicates that the system rotates, hence the ODE is 

composed by a number of expressions implying 
moments. There is a sum of moments 

T1CN07

Small   
Indication that the amplitude of rotation is so small that 

one can infer sin  

T1CN08

Input y(t) 
Input function that makes the system (pendulum) to 

experience motion (Useful to obtain the expression to 
model the system behavior) 

T1CN09

Output (t) 
Function of interest. The ODE to obtain represents the 

behavior of the motion of the pendulum 

T1CN10

Equilibrium y=	 =0 When y = 0, = 0 too. T1CN11

Pendulum (bar/lever) 
Indicates that the system has a second derivative of  and 

yields the expression  

T1CN12

The existence of many 
elements 

Indicates that their effect on the rotation of the pendulum 
will be given by the summation of moments equal to the 

product of the moment of inertia times . Integrates all 
the components in the ODE 

T1CN13

 

Table 4. and Table 5. show the potential readout strategies and causal nets for Task 2. These were 

used with the same purposes as those for Task 1.  
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Table 4.  

List of potential readout strategies for Task 2. 

Task element Possible readout Code 

 Supply current, acts as the input element or function. It will 
be part of the ODE 

T2RO01 

 Current going through and affected by L and R. It is seen 
after the node at . 

T2RO02 

 Current going through and affected by C. It is seen after the 
node at  

T2RO03 

 Difference of potential. It is the quantity to be analyzed. The 
ODE obtained is given in terms of this dependent variable 

and its derivatives 

T2RO04 

 Difference of potential. Voltage at node . Influenced by the 
effect of the capacitor C 

T2RO05 

C Capacitor. It is an element that affects the behavior of the 
voltage  and current 

 

T2RO06 

R Resistor. It is an element that affects the behavior of the 
voltage 

 and current 
 

T2RO07 

L Inductance. It is an element that affects the difference of 
potential ( ) and 

 

T2RO08 

 

Table 5.  

List of potential causal nets for Task 2. 

Elements identified 
from the readouts 

Possible causal net element Code  

 Supply current, acts as the input element. It will be part 
of the ODE. Possible use of Kirchhoff Current’s Law 

( ) 

T2CN01 

 Current going through and affected by L and R. It is seen 
after the node at . Possible use of Kirchhoff Current’s 

Law ( ) 

T2CN02 
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Also,  

 

 Current going through and affected by C. It is seen after 
the node at . Possible use of Kirchhoff Current’s Law 

( ) 

1
 

T2CN03 

 Several inferences may come from this element. These 
are accounted for in the solution of the task from the 

expert’s perspective. 

 

T2CN04 

 Difference of potential. Voltage at node . Influenced by 
the effect of the capacitor C 

1
 

T2CN05 

C Capacitor. It is an element that affects the behavior of the 
voltage  and current 

 

1
 

T2CN06 

R Resistor. It is an element that affects the behavior of the 
voltage 

 and current 	
 

 

T2CN07 

L Inductance affecting the difference of potential and 
current 

 

 

T2CN08 

  

Finally, in the same way as I did with the other two tasks, I present Table 6. and Table 7 that 

correspond to the possible readout strategies and causal nets for task 3. This task, in contrast with 

the first two tasks, contained elements that did not need to be used as part of the set of readouts or 
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inferences necessary to obtain the ODE. Specifically, the terms L, h1 and pa could be set aside 

without affecting the solution process of this task. 

Table 6.  

List of potential readout strategies for Task 3. 

Task element Possible readout Code 

 This is the flowrate of the liquid entering 
the tank (students were asked to assume 

water) 

T3RO01 

 Atmospheric pressure exerted on the 
water surface, not essential for the 

analysis 

T3RO02 

 Height of the tank, not essential for the 
analysis 

T3RO03 

 Quantity to be analyzed. The ODE to 
obtain is given in terms of this dependent 

variable and its derivatives 

T3RO04 

A Area of the tank. Useful to calculate the 
volume of the tank and its rate of change 

T3RO05 

L Height at which the orifice in the tank is 
located, not essential for the analysis 

T3RO06 

Orifice at L Useful to calculate the flowrate out of 
the tank 

T3RO07 

Tank Part of the system to be analyzed in 
which the variation of the h occurs 

T3RO08 
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Table 7. 

 List of potential causal nets for Task 3. 

 

Elements 
identified from 

the readouts 

Possible causal net element Code  

 This flowrate is making the height of the tank increase. It is 
related to the Bernoulli’s equation 

 

T3CN01 

 It is an indicator of the surrounding conditions of the 
problem. Not relevant for the purposes of the task 

T3CN02 

 Height of the tank. This parameter is not relevant to the 
solution of the task 

T3CN03 

 Quantity to be analyzed. The final ODE will be given in 
terms of this dependent variable and its derivatives. It seems 

that the ODE will not contain second order terms 

T3CN04 

A Area of the tank. Useful to obtain the volume of the tank. 

 

T3CN05 

L This parameter is used only as a reference. From this 

distance, water level changes, characterized as  

T3CN06 

Orifice at L This parameter is related to the flowrate coming out of the 
tank 

2  

T3CN07 

Tank Element of the system where the variation of the quantity 
“h” occurs. It can be used as a control volume 

T3CN08 

Interviews 

For the interviews, I scheduled two sessions with each student. In the first session I started 

by talking about their responses to the survey and explained how the sessions would be 

conducted. I informed them that the first session would take about 45 minutes in which they 

would solve Task 1. I made sure that they had recently studied the topic of mechanical systems in 
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their system dynamics class in order to facilitate their thinking process. The sessions were video 

recorded and students were asked to write and speak any idea that came to their minds as they 

were solving the task. I also kept records of their work on the papers provided during the task. 

About three weeks later I scheduled the second session. This time students were asked to 

solve Tasks 2 and 3. Since this interview focused only the two tasks, each student took less than 

40 minutes overall to solve or at least work on the two exercises the best they could. All sessions 

were individual and the students relied on their knowledge only. That is, they did not count on 

the help of any textbook, sheet of formulas or any other external help. This is a very important 

aspect to mention since some of them alluded to this fact and how it would facilitate the work. 

These aspects were taken into account as I present the results of the students’ work.  

Data Analysis 

 The analysis of the students’ work consisted on analyzing two sources, the video 

recordings of the interviews and students’ written work. The main analytic tool was the written 

work, and the videos were used if clarification was needed for a student explanation or an 

element of their written work. 

 I first reviewed each video in order to get an overall sense of how each student worked 

with each task. This state enabled me to sketch their overall solution path. It was useful to begin 

to perceive possible readouts and the causal nets for the students. After the first review of the 

videos, most of the work was focused on the students’ written work. I performed the analysis in 

three stages, where the first stage consisted of two simultaneous parts. I now proceed to describe 

how each stage of the analysis was completed.  
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Stage One 
 

The first stage consisted, first, of locating the readouts students used during the solution of 

the task. I identified those elements that students considered as relevant to use in order to obtain 

the ODE. The lists I provided of possible readout strategies in the previous section was helpful to 

anticipate the kinds of things that might make up readouts for these students. Any readout 

element that matched one in my list in the previous section was labelled as such. However, I also 

recorded readouts that were not in my anticipated list. To identify a readout, any time a student 

referred to a symbol or a part of the prompt and made an interpretation of it, I identified that as an 

instance of a readout strategy. I recorded what the nature of that readout strategy was, in terms of 

what they interpreted that symbol, part of the diagram, or wording of the task to mean. In the 

same way, the second stage consisted of identifying the inferences made by the students using the 

readouts with which they could eventually obtain an expression that represented an ODE model 

of the system. Most of the work I did in these two parts of the first stage consisted on identifying 

the readouts and causal nets, as the students worked on the tasks. I identified students’ readouts 

when they considered a certain element as relevant for his/her analysis. For example, in task 1, 

one of the elements was labelled as “k1”. This was the spring located at the top of the picture (see 

Figure 4). The student could state that this element somehow influenced the system and was part 

of the ODE, or that this spring produced a force acting on the pendulum or any similar statement; 

this is an indication that the student “sees” this piece of information as relevant to set up the ODE 

of the system. In this case, that is considered a readout. Most of the readouts were listed in the 

tables shown earlier, so if a readout matched one in the table then it was labelled with the 

assigned code for convenience.  
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On the other hand, a further step consisted of analyzing how the student used those 

readouts. Continuing with the example of the spring 1 from task 1 (k1), a possible causal net 

implied the recognition of this element yielding a moment2. In this case, the student infers that 

the force of the spring produces a moment defined by the product of the force and the distance 

from the center of rotation, for this task specifically it is defined as . Thus, if a student 

showed evidence in his/her written work of this expression, then it was evidence of an activation 

of the causal net for that corresponding readout, spring 1. Similarly as with the readouts, I listed 

potential causal nets for the tasks and if the causal net matched one in the table, it was labelled 

accordingly. As mentioned earlier, in addition to the list of potential readouts and causal net 

elements, I left open the possibility of detecting others that were used by the students as they 

worked on the tasks. These elements were recorded and were listed on a different table, as shown 

in the results section. 

Stage Two 

In the theoretical background chapter I defined concept projections as the set of 

knowledge and strategies used by an individual in a context in which a concept is applicable. In 

this stage, I made use of the knowledge (readouts and causal nets) and attempted to infer the 

strategies used by the students from the set of readouts and causal nets that helped them solve the 

task. In other words, I operationalized these strategies so that I could find evidence of concept 

projections. As I described concept projections in the theory chapter, I used the example of 

quadratic equations to show the different representations in which these are presented. We 

defined concept projection of roots in the factored context, or in the trinomial context. Each 

concept projection involved a set of identifiable strategies and knowledge. In the same way, I 

                                                 
2 A moment is defined as the product of a force times a distance from the center in rotational systems 
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attempted to categorize the different strategies students used to approach the tasks. Sometimes 

they used diagrams, or relied on the information from a specific equation or on the effects of the 

components of the system in its behavior. I spotted at those sets of strategies and knowledge and 

categorized them accordingly. 

Stage Three 

 In this stage, I examined each strategy to determine whether it was productive for the 

student in producing a solution to the task or not. This was done by observing (1) if the strategy 

helped them achieve any kind solution at all, (2) whether the solution was correct, and (3) 

whether the students had to revise their thinking or approach because of “dead ends.” In doing so, 

I was able to observe which readouts and causal net elements allowed some students to progress 

further than others. I was also able to observe difficulties students had during their solution 

process, and could conjecture as to the possible readouts and causal net elements that factored 

into the difficulty.  

Pilot Study 

 Before carrying out this study, I interviewed Patrick, an undergraduate mechanical 

engineering student. He volunteered for a pilot study in order to determine the possibility to use 

the coordination class theory as presented in this document. Patrick was asked to solve a mass-

damper-spring system. Based on the theory, I identified the readouts and the causal nets although 

I did not extend the analysis to hypothesize about concept projections. I briefly describe how I 

identified the readouts and the causal nets in this pilot study. 

 In this task the student, Patrick, was asked to derive the equations of motion for the two 

masses labelled as m1 and m2 as shown in Figure 8. In Figure 9, there are four parts that 

comprised the analysis of readouts and causal nets. Section 1 indicates that this student was 
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attempting to make some inferences based on the information he saw as relevant (the readouts). 

He was trying to remember different formulas learned in the past and that could have something 

to do with the principle governing this system, Newton’s Second Law. The first two equations in 

this section show that he recognized the effect of the spring in the system F=k(x), also, he 

recognized the governing principle by writing the equation F=ma.  

This last equation guided part of his reasoning in section 4 where he extended the 

expression in an attempt to include all the elements of the system. Section 2 in Figure 9 evidences 

Patrick’s recognition of the two masses as being relevant to obtain the equation of motion; that is, 

these two drawings are readouts that, later on, are used to activate causal nets in sections 3 and 4 

to obtain the ODE for one of the masses. Even though the expressions in sections 3 and 4 are not 

entirely correct, still we might find evidence of Patrick’s attempts to use causal nets. 

As I mentioned earlier, this pilot study helped me refine the process of identification of 

readouts and causal nets. I could notice how a student recognized the relevant information and 

not relying on the expert’s view only. Similarly, a student might come up with varied inferences 

from what he/she “sees” from the task as well as the eventual selection of strategies; this pilot 

study also served this purpose. I used this experience to analyze students’ work since it helped 

me to be aware of the different ways in which students might interpret the tasks and the elements 

in them. This pilot study also served as a reference to validate the possibility of applying the 

concepts of the coordination class theory in this kind of contexts.  
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Figure 8. Mechanical system for the pilot study. 

 

 

Figure 9. Analysis of a student’s work in a pilot study. 

Further inferences 
from the readout 

strategies
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CHAPTER 5: RESULTS 

 In this results section, I start making an account of students’ answers to the survey’s 

questions in order to highlight their mathematical knowledge regarding ODEs. Then, I describe 

the tasks one at a time, starting with the first task for each student, then the second task and 

finally the third task. I describe how the five different students attempted to work out a completed 

differential equation and the processes they took to do that. Based on the stages described in the 

data analysis section, I describe the readouts I identified, then the corresponding causal nets. I 

also propose three overall solution strategies that emerged from the data by which the students 

were able to progress toward setting up the ODE. These strategies, together with the readouts and 

causal net elements that make them up, are considered to be concept projections of ODEs into 

these contexts.  

Finally, I discuss other aspects from the students’ written work, including decisions, 

strategies and the use of other elements that hindered their processes to obtain the requested 

ODE. Each student’s description will follow this pattern and though I make attempts to make the 

account in the order described in this paragraph, in many passages I made mentions to all the 

stages because of the decisions made by the students as they solved the tasks. 

Analysis of Students’ Answers to the Survey 

 Table 8 shows the relevant pieces of information given by the students on the survey. 

Some items were included from the initial conversation held in the first session of the interviews. 

In that segment I attempted to complement the information they provided in the survey. For 

question (1) related to what students understood for an ODE, the most common reference focused 

on recognizing a second order equation because of the existence of a second derivative of y, 

another common features were linearity and homogeneity although  there were no explanations 
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related to these. Zane, Rebecca and Josh made mention of the fact that an ODE relates a variable 

and its derivatives while Harry and Kira did not go further with their explanations, especially 

Kira who had limited responses to all the questions in general. 

 With respect to questions (2) and (3) all of them related to the first and second derivatives, 

and all but Kira related these to the contexts with which they are more familiar with, mechanical 

systems, for this reason, they related these to velocity and acceleration. Question (4) related to the 

dependent variable; in this question three of the students thought of it in terms of position, 

matching what was mentioned about the previous questions (2) and (3) given the influence of the 

mechanical systems. 

 In question (5) students related the constants with “coefficients” of the function and the 

derivatives. Zane was the only one who indicated that these constants were related to the 

parameters of the system, trying to provide a better interpretation of these elements. Three of 

them, including Zane were more specific by relating these coefficients to the mass-spring-damper 

system, thus moving away from the mathematical background and showing more influence from 

the engineering and/or physical one. On the other hand, there was a general agreement as for 

what they understood for question (6), which was related to the difference between the ODE 

being equal to zero or any other value. There was consensus in indicating the when the ODE was 

not equal to zero, there was an external function acting on the system and made it a forced 

system. In this case there was no mention to any application or relation to an application from 

physics or engineering except by Kira who briefly explained that it could be a “step” function, a 

kind of function that is often used in the system dynamics course.  
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Table 8. 
 

Students’ survey answers 

 

 Zane Rebecca Harry Josh  Kira 

(1) ODE 2nd order 

 

Homogenous 

 

Linear 

 

2nd derivative 

 

Model that 
determines 
behavior of a 
given variable 

Linear  

 

Homogenous 

 

2nd order 

 

Derivative with 
respect to one 
variable 

 

Relation of 
variable with its 
derivatives 

 

2nd order 

 

Homogenous 

 

Relates to 
motion 

 

Linear 

 

First derivative 
of variable 

 

 

2nd order 

 

Homogenous 

 

Linear 

 

Relation of 
variable with its 
derivatives 

2nd order 

 

Variable and 
its derivatives 

 

 

      

(2) y’’ 2nd derivative 

Derivative of y’ 

acceleration 

2nd  derivative 
of y 

Acceleration 

2nd derivative 

acceleration 

2nd derivative 

Acceleration 

Slope of y’ 

2nd derivative 
of y 

      

(3) y’ 1st derivative of 
y with respect 
to independent 
var. 

 

Velocity 

1st derivative of 
y with respect 
to independent 
var. 

 

Speed 

1st derivative of 
y with respect 
to independent 
var. 

 

Velocity 

1st derivative of 
y with respect to 
independent var. 

 

Velocity 

 

Slope of y 

1st derivative 
of y with 
respect to 
independent 
var. 

 

      

(4) y Output function 

Position 

Response to 
input 

A function that 
satisfies the 
ODE 

Position 

Variable in 
function of time 

Function 

Position 

Changing 
variable 

      

(5) 
Constants 

Coefficients 
related to the 
characteristic 
eq. 

Constants 

Relationship 
between 
function and its 

Coefficients 

MBK system 

Coefficients 

Linearity of the 
function 

Mention of 
MBK  
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System 
parameters 

MBK system 

derivatives 

      

(6) Zero // 
Not zero 

No forcing 
function or 
input 

 

Non zero: 
Forced 
response + free 
response 

External 
function 
applied to the 
system 

Zero: Free 
response 

 

Non zero: 
forced +  free 
response  

Input to the 
system 

No other forces 
involved 

 

“Heterogeneous” 

Zero: No input 

 

Non-zero: step 
or forced 
response 

 

Analysis of Students’ Written Work for Task 1 

Task 1 - Zane 

At the beginning Zane recognized that the system in task 1 was governed by the principle 

contained in the Newton’s Second Law understanding that the summation of the forces was equal 

to the product of mass and acceleration, which in this case was the product of the moment of 

inertia and the angular acceleration. Zane recognized that the pendulum was subject to the forces 

exerted by the two springs and the damper and the ODE would contain this parameter, I.; in other 

words: ∑ . This reasoning coincides with T1RO12, T1CN12 and T1CN13. From this 

moment on, he attempted to explore the possibilities to obtain the mathematical model of the 

system. Also, he considered relevant, and used in further steps, the direction of rotation of the 

pendulum. Zane used it to determine the sign of each term of the final ODE.  

Figure 10 shows the first excerpts made by Zane. In these, there is evidence of his ability 

to recognize the pieces of information that he would require in order to set up the ODE. The 

pieces circled in the figure show those elements considered the readouts of his work and coincide 

with those predicted from the expert’s point of view.  
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Figure 10. Zane’s initial excerpts from his work on Task 1. 

Zane’s reasonings included the following: 1) The circles highlighting  and  

are made equal to  and  from the fact that the problem statement indicates that this system 

is to be analyzed for “small ”. This is evidence of both a readout and a causal net coded as 

T1RO08 and T1CN08 respectively. Also, he indicated that the mass of the pendulum was an 

aspect to take into account which, when rotated, was considered “I” or “Ie”, corresponding to 

T1RO12 and T1CN12. Finally, the expressions “fc” and “fk2” indicate the identification k2,  c, L2, 

L1 and k1 as part of the final ODE (T1RO02 to T1RO04, T1RO06,  T1RO07), and inference of 

the effect these elements in the ODE (T1CN02 to T1CN06). Although there is no expression 

involving the first spring labelled as k1, this was also included in the next stage of Zane’s work as 

suggested by the following lines: “So this force right here will be equal to , which is 

approximately  based off of the assumption that we make that it’s a small angle”. 
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Figure 10 shows the main focus of Zane’s work. This section was the portion of work 

where he devoted more time and in which he made most of his reasoning. He used a Free Body 

Diagram (FBD) of the pendulum that includes all the elements affecting its rotating motion. From 

this FBD Zane obtained all the expressions necessary to set up the ODE for this system. The 

circled on the left of the figure indicates the first Zane’s attempt to make sense of the task and 

also, the one from which the drawing on the right of the figure was taken which allowed setting 

up the final expression.  

 

Figure 11. Zane’s Free Body Diagram of the Pendulum. 

As mentioned, from the FBD Zane obtained the ODE requested by the task. 

 

 

Figure 12 shows an equation that evidences that Zane took into account the remaining 

readouts and causal nets from the expected ones. Although this one is incomplete, his last 

expression, shown in Figure 12, is a correct ODE including all the elements. When compared 

with the tables of readouts and causal nets, Zane used all of them in his reasoning to obtain his 

ODE. 
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Figure 12. Zane’s ODE. 

 When using all the readouts and making the inferences linked to those readouts, Zane 

followed closely to what is described in the conceptual analysis of this task in the Methods 

section. This does not mean that in order to finish the task successfully, students must use this 

specific path. In contrast, there might be different ways to arrive to the same solution. In this 

case, and taking into account the third stage of the analysis, the relevant aspect that allowed Zane 

to use his readouts and facilitated the use of causal nets was his major use of the FBD. In this 

way, when referring to the set of knowledge and strategies that enable the application of the 

concept involved; that is, the relation between the quantity to be analyzed and its derivatives, the 

projection of the concept was facilitated by the FBD. After I make an account of the Zane’s work 

I refer to this aspect in more detail. 

 

Figure 13. Zane’s final expression. 

Finally, in this case, Zane did not seem to use strategies that hindered the process to 

obtain the ODE. His work was straightforward and very close to that of the conceptual analysis 

given in the methods section. The figure below shows an approximate flow of Zane’s reasoning 
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in this task. The labels in rectangular shape correspond to readouts (RO) and causal nets (CN) 

correspondingly, the dashed arrows represent the approaches used by the students that activated 

inferences or readouts. These approaches are described in more detail as they are presented in the 

results of students’ work. In this section I introduce the approach used by Zane. Finally, the 

dashed hexagon represents whether the student was successful, unsuccessful or partially 

successful in obtaining the ODE for a given task. 

Figure 14 shows the set of readouts, inferences and strategies used by Zane as he solved 

task 1. He initially saw the relevance of the small angle (T1RO08) and the pendulum’s inertia 

(T1RO12). Afterwards, the dashed line indicates the “Diagram approach” which, I argue, might 

be the concept projection of the concept of the ODE for this specific context. This approach, 

which will be explained in the next paragraph, helped Zane to activate the readouts and causal 

nets (the set of boxes below the diagram arrow) that led him to obtain the ODE for this task 

successfully. This figure is described in more detail below. 

Diagram strategy. As shown in the description of Zane’s development of Task 1, he used 

a Free Body Diagram as a tool to understand the behavior of the system as a whole but at the 

same time, it enabled him to identify the effect that each component posed on the system. The 

FDB (Diagram) facilitated his thinking process in these two ways.  

In general, we might think of the diagram strategy as a general-to-specific approach that 

helps the student focus on the overall system initially. Then, within that system, the student can 

attend to individual elements without losing sight of the system as a whole. The diagram 

approach resonates with certain methods used in engineering to describe a given system, such as 

free-body diagrams, schematics or control volumes. Thus, as is seen in the following sections, 

students could apply this approach to any of the three tasks. 
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As described in the theoretical framework, we can consider this to be a projection of the 

concept of differential equation in the context of diagrams. This context enables the student to 

use the readouts and causal nets to obtain the properties or characterize the quantity involved. 

Summary of Zane’s flow of reasoning for Task 1. Each student’s task has been 

described using figures similar to Figure 14. The rectangular shapes indicate either a readout 

(RO) or a causal net (CN). Each readout and causal net was coded for each task (T1, T2 and T3); 

also, each reaout and causal net has been numbered as indicated in tables 2 to 7. In this manner, 

T1RO08 indicates the readout number 8 from Task 1 related to the identification of the small 

angle theta in this task.  It is also important to note that if the rectangle, or any other shape, has a 

white font, then it means that it was properly activated and used in the task. On the other hand, 

when a rectangle is gray, it means that that specific readout or causal net was not activated, 

identified or improperly used; some of these readouts or causal nets were essential to complete 

the task, others were not relevant. 
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Figure 14. Zane’s flow of reasoning for task 1. 

 

 On the other hand, the dashed arrows indicate the strategy used by the student to help 

him/her go further with the exercise. Also, at the bottom of each figure there is a dashed hexagon 
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that shows whether the student finished the task successfully, meaning that he/she found the right 

ODE for the task or not. 

 In this case, Zane started by recognizing the importance of the small angle theta (T1RO08 

and T1CN08) and the relevance of the pendulum (T1RO12 and T1CN12). Later on he used the 

Diagram strategy which activated both the necessary readouts and causal nets that eventually led 

him to obtain the ODE. The long and short arrows are used as an aid to indicate connection 

between readouts and causal nets. Zane showed an adequate performance along all the process to 

obtain the ODE. He came up with right causal nets and the strategy he chose (Diagram approach) 

served his purposes well.  

Task 1 – Rebecca 

The first thoughts that Rebecca shared on this task were similar to those by Zane. She 

identified the relevance of the small angle , T1RO08, and its implications, T1CN08. Next, she 

wrote expressions in the picture indicating the recognition of the effect of the elements (k1, k2, 

and c) as forces causing the pendulum to rotate corresponding to T1RO02, T1RO03 and 

T1RO07. 

In her following work, Rebecca started to think about the governing principle influencing 

the system, the Newton’s Second Law. In this way, she recognized that the pendulum was 

affected by the components, she recognized previously and from this reasoning she started to 

develop the main part of her work to obtain the ODE, T1RO12. She struggled for a moment but 

eventually came up with the following expression (T1CN12): 
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Figure 15. Rebecca’s identification of Newton’s Second Law for Task 1. 

When asked about the meaning of the expression at the bottom in Figure 15, this is what 

she replied: 

Interviewer: What does that mean? That “I” and that “ ”? 

Rebecca: The “I” is the inertia of the object and theta is the angular displacement, so  
means that it’s the second derivative with respect to time, meaning it’s the angular 
acceleration 

 

The next thoughts implied the identification of the effect of each component on the 

pendulum. Rebecca proceeded to focus on each of the components of the system in order to finish 

the task. The expression below (Figure 16) indicates a partial solution of the task, she was able to 

come up with it by relying on the effect of each component. Figure 16 evidences readout 

strategies T1RO02, T1RO03 and T1RO07 that correspond to the recognition of the relevance of 

the two springs and the damper, as well as the distances L1 and L2 correspondingly. This figure 

also shows evidence of the use of causal nets that yield the moments produced by each 

component. In this case, the terms indicate a partial expression that is completely reported in the 

final answer. 
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Figure 16. Rebecca’s partial ODE. 

After obtaining this partial equation, Rebecca went back to analyzing each of the 

components in more detail. Figure 17 shows how she obtained analyzed each component 

identifying readouts and making the corresponding inferences. Expressions Fk1, Fk2 and Fc were 

obtained when the causal nets from the readouts , L1, L2, k1, k2, c,  and  were activated. In 

terms of the codes assigned, she activated the following causal nets T1CN01 to 07 , and 09-10.  

 

Figure 17. Rebecca’s component-based analysis of the system. 

 Rebecca’s analysis was carried out using a different approach than that used by Zane 

(FBD, or Diagram approach); instead, she focused on the components of the system to eventually 

put together all the pieces and set the equation. This approach is explained after Rebecca’s 

account is completed. Rebecca was then able to finish this task successfully as shown in the 

figure below: 
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Figure 18. Rebecca’s final ODE. 

 The analysis of Rebecca’s readouts and causal nets showed coincidence in most of the 

ones predicted by the conceptual analysis presented in the methods section. In both cases, Zane 

and Rebecca, there was no need to use T1RO11 and T1CN11 regarding the recognition of y = 0 

and  = 0 because these elements from the initial conditions are more useful when it comes to 

solve the differential equation rather than at this stage when the student has to set up the 

expression. 

 The analysis of Rebecca’s strategies used in conjunction with the set of readouts and 

causal nets, evidenced a strong rely on the components effect on the system. In contrast with 

Zane’s strategy, who used an FBD, Rebecca did not need to turn to this type of tool. The way that 

she was able to arrive to a solution of the task focused mainly on the individual effect of the 

elements and thus the projection was possible. This approach is explained in more detail in the 

next paragraph after the description of Rebecca’s flow of reasoning in the task. 

 Summary of Rebecca’s flow of reasoning for Task 1. Figure 19 shows how 

Rebecca approached this task. First, she identified the relevance of the small  and the inertia of 

the pendulum. Next, she used the component-based strategy to analyze each component of the 

system (the effect of the springs and the damper along with the function y(t)). She worked on the 

readouts and the corresponding causal nets activated by the concept projection from the 

component-based approach that led her to obtain the ODE successfully. 
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Figure 19. Rebecca’s flow of reasoning for task 1. 

Description of the Component strategy. This strategy consists on the identification and 

focus on the components of a system that are ultimately part of the modeling expression. For 

example, Rebecca’s solution of the task presented a detailed description of the effect of each of 

the components of the system affecting the behavior of . She identified the effect of the two 

springs as well as the damper in the system, and then determined how to put these elements 
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together into a coherent whole. There was no evidence of her using any diagram in order to 

understand the system’s behavior and ultimately to obtain the ODE representing that behavior. 

Thus, the difference between the component and diagram approaches is the guiding framework of 

attention. Whereas the diagram approach places initial attention on the whole system, the 

component approach places initial attention on individual pieces of the system and on how those 

individual pieces relate to other information in the causal net that could be useful for producing 

an ODE. In summary, the diagram approach is general-to-specific, while the component approach 

is specific-to-general. It can also be considered as the concept projection of the differential 

equation in the context of the components of the system. 

This strategy was supported by an initial step in which Rebecca identified the governing 

principle in the system (Newton’s Second Law). This action was an important activating strategy; 

however, the main actions to obtain the final ODE, in the case of Rebecca, focused on the 

component-based strategy. 

Task 1 – Harry 

 Harry’s first thoughts on the task involved the fact that the pendulum had a mass even 

though the task’s statement did not mention that: 

 Harry: the rod is not massless so… you need to draw a kind of reaction for the inertia of 

the rod (pendulum) because, as you know, like, something the weights … is going to react 

[inaudible] the pendulum is going to react to gravity or something” 

 Then, Harry wrote the term “mI” right next to the pendulum, and then the term “m ”. 

This shows recognition of the role of the pendulum (T1RO12); however, the corresponding 

causal net (T1CN12) was not activated. This was a first indication of a potential unsuccessful 

setting up of the equation. See Figure 20. 
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Figure 20. Harry’s misinterpretation of the pendulum’s inertia. 

 After this initial analysis, Harry also indicated the importance of the small angle 

(T1RO08) and used it afterwards in the expressions dealing with  (T1CN08). His main 

reasoning was focused on the components of the system, in this way he obtained a partial 

expression, as shown in Figure 21, and led him to report his final ODE as seen on Figure 22. 

 

Figure 21. Harry’s partial setting up of the ODE. 

 Nowhere in Figure 21 Harry shows evidence of inferring the effect of the forces from the 

springs and the damper on the system, which at the same time should be observed in the 

component analysis. Thus, even though he identified all the readouts for the successful 

completion of this task, Harry did not make the right inferences that led to the proper 

representation of the system’s ODE. 

 
Figure 22. Harry’s final ODE. 

 On the other hand, despite the fact that Harry recognizes the relevance of the input y(t) 

(T1RO09), he did not activate the causal nets necessary to imply this effect in the system 

(T1CN09). Hence, Harry’s work was partially successful in the completion of this task. 
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 Summary of Harry’s flow of reasoning for Task 1. Regarding the strategies he 

activated for this task, Harry was mostly focused on a component-based analysis which was 

insufficient to help him coordinate the inferences to indicate a proper effect of the components of 

the system. His work on this task was limited to the excerpts shown in this account as well as 

those in which he reasoned about the small angle and some minor notes on the effects of the 

components. In this case, those notes did not lead him to express the moments caused by the 

springs and damper properly. Figure 23 represents an approximation of his reasoning during this 

task; those figures in grey shade represent inability to activate them. The one labelled with 

T1CN12 implied that he could not completely infer the fact that there was a rotating system. On 

the other hand, the rest of the gray rectangles are related to his difficulty to integrate the elements 

of the ODE properly to obtain the right expression. Among these we find T1CN13 Grouping 

which implied his inability to put all the elements together in the proper way to obtain a valid 

ODE for this system. 
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Figure 23. Harry’s flow of reasoning for task 1. 

Task 1 - Josh 

In his initial reasoning, Josh did as the other students had done. Given that the statement 

of the task indicated at its beginning that they were dealing with a small angle, this was the first 

recognition and eventual inference of the task thus implying T1RO08 and T1CN08. On the other 

hand, Josh drew a different version of the system, as shown in Figure 24. This diagram could be 
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interpreted as an attempt to draw an FBD but soon Josh abandoned the idea and continued 

working with another strategy. 

 

Figure 24. Josh first attempt to make sense of the system’s behavior. 

In his further efforts to set up the equation Josh was trying to find ways to relate the angle 

	with the input function y(t). As he stated: “I’m trying to see how y is related to theta” . He 

stated that the system had three different components that allowed him to obtain three different 

equations of motion because those three parts of components meant three degrees of freedom. 

Figure 25 shows the expressions he obtained with this analysis, one similar to the component-

based analysis observed in Rebecca and Harry’s work.  

 

Figure 25. Josh’s preliminar expressions. 
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This strategy allowed him to identify the readouts required to go further with the process 

of obtaining the ODE. In this case, those related to the components of the system: k1, k2, c, L1, L2, 

 and I (T1RO02 to T1RO07 and T1RO09, 10 and 12). The difficulties arose at the moment of 

activating the inferences for the components’ action and also the influence of the input function 

on the system: T1CN01 to T1CN07 and T1CN09, 10 and 12. His last expression for the ODE 

evidences the lack of the proper inferences that could have led him to the right expression for the 

ODE. See Figure 26. 

 

Figure 26. Josh’s final expression. 

As mentioned earlier, it seems like Josh used a modified component-based strategy; 

however this projection was not helpful in leading him to infer the effects of the input function on 

the system or the proper expression for the effects of the components on the system. On the other 

hand, during the preliminary conversation in which I assessed again Josh’s knowledge of the 

basic notions of differential equations, Josh seemed acquainted with the techniques to solve 

differential equations, as seen on Figure 27, but this knowledge was not useful at this stage. This 

aspect is considered in more detail in the discussion section.  

Summary of Josh’s flow of reasoning for Task 1. Figure 28 shows Josh’s flow of 

reasoning. His case was similar to that of Harry’s. This meant that after an initial identification of 

the relevance the small angle and the use of the pendulum inertia, he started using a strategy to go 

further with the solution of the task. He used the Component approach, although he also made 

use of the Diagram approach. In T1CN12 he could not define the moments properly which was 

linked to the subsequent errors in the setting up of the effect of the components of the system; on 
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the other hand, in T1CN13 he could not group the elements in the right way. As a consequence 

his expression was not correct.  

 

Figure 27. Excerpt from Josh’s discussion about ODE solution techniques. 
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Figure 28. Josh’s flow of reasoning for task 1. 

Task 1 - Kira 

 Kira’s initial thoughts focused on making comparison of translational systems with 

this rotational one. She asserts the following: 

Kira: “We’ve talked about equivalent inertias a lot and solving in terms of theta. So this 

theta in this problem is gonna be your “x”” 

 Also, Kira related that equivalent inertia to the second derivative of theta, T1RO12 and 

T1CN12 as well as implicitly assumed T1RO08 and T1CN08, related to a small “theta”.  
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 In a next step she stated: “actually, there is picture we always draw…”. implying the use 

of an FBD where she gets most of the readouts for this task. Figure 29 shows her work up to that 

point. 

 

Figure 29. Kira’s FBD. 

Figure 29 shows evidence of the identification of T1RO02 to T1RO07 as well as 

T1RO12, corresponding to the pendulums motion. It seems like at this point she has not found a 

way to include the function y(t) T1RO1, it was only by the end of her work that she includes it 

but not figuring out what role y(t) played in the ODE, T1CN01.  

Kira also tried to figure out the effect of each component on the system, although she did 

it by recalling the equations corresponding to each component. At the same time she recognized 

that the governing principle, Newton’s Second Law would help her imply the final ODE. Figure 

shows this portion of her reasoning. 
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Figure 30. Kira’s reasoning about the components of the system from the equations. 

 Figure 30 shows evidence of a complete recognition of the readouts corresponding to the 

components of the system (the two springs and the damper). However, there is still an incomplete 

deployment of the necessary inferences to conclude the task; that is, the effects of each of the 

components of the system as well as the function y(t) (T1CN02 to T1CN07, and T1CN12). In 

fact, Kira states the following at this point: “I’ve got bits and pieces of it. It’s the putting it 

together that’s a little bit tricky…”. This coincides with the finding s at this point where she 

identifies the elements that contribute to obtaining the ODE but she fails to articulate them 

altogether to yield the required ODE. Furthermore, this seems to be another approach in an 

attempt to obtain the ODE; Kira tried to rely on the equations that govern the effects of the 

components on the system and use them to as a strategy to infer the equation of motion. This 

equation-based approach is explained right after Kira’s work is analyzed. 

Later on, Kira drew a diagram of the system in an attempt to depict the effects of each 

component, an FBD similar to the one drawn by Zane. Eventually, Kira came up with the 

expression shown in the picture below. In this ODE we might evidence that there is a term 

( ) that is not seen in any other of the student’s final ODE. Also, Kira’s ODE shows y(t) but 

does not present how it affects the dependent variable. 
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Figure 31. Kira’s final ODE. 

 
Figure 32. Kira’s flow of reasoning for task 1.  

 Summary of Kira’s flow of reasoning for Task 1. Kira identified, just like the other 

students, the relevance of the angle and the role of the pendulum’s inertia. She used the Diagram 

strategy to help her notice the relevance and role of the elements of the system. She then 
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proceeded to use Equation and Component strategy to make an attempt to put together all the 

elements (T1CN13) of the ODE. However, similar to Josh and Harry, Kira got stuck on the 

impossibility to understand the role of the input function (T1CN01) and could not provide an 

accurate expression at the end even though she had noticed its relevance (T1RO01). 

 

Equation strategy. This strategy seems to rely on the fact that there is a main equation 

representing the governing principle acting on the system. From that equation the student centers 

all his/her efforts to obtain the ODE by manipulating the equation or making substitutions into 

the equation. For example, as we see in the electrical context, the student might start his work 

recognizing the KCL and base all his/her reasoning on the equation is=i1+i2 . A student using this 

approach begins with this equation and attempts to identify how each part of the equation fits 

with the context in order to transform the base equation, through substitutions and other 

manipulations, into an ODE. In this case, we might consider this, the concept projection of the 

differential equation in the context of the equation. 

 In general, students used this strategy as an ancillary tool when solving Task 1. In the 

next two tasks we might notice that this strategy played a stronger role beyond that of only 

identifying the governing principle of the system. 

Summary of the Strategies  
 

So far I identified three sets of strategies used by the students in order to assist them to solve the 

tasks: (1) Diagram strategy, (2) Component strategy and (3) Equation strategy. The diagram-

based strategy involves the use of any diagram or depiction of the system in a simpler 

representation. This approach includes the identification of any element in the system that affects 
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the system behavior. In the following analysis of the tasks I describe other examples of Diagrams 

depending on the context; Free Body Diagrams are one of these examples. 

The second strategy, the Component-based strategy, entails focusing on each of the system’s 

components; infer its effects on the system and then figure out the integration of those 

components in the whole. As discussed earlier, the diagram approach is general-to-specific, while 

the component approach is specific-to-general. 

The equation-based approach relies on an equation that governs the system’s behavior and, by 

making substitutions and manipulations, converts the equation into an ODE. This approach was 

very useful for students when solving task 3, the fluid system, as we may see in the 

corresponding analysis. 

Analysis of Students’ Written Work for Task 2 

Task 2 – Zane 

 As task 2 was presented, Zane initially departed from the stated objective of producing an 

ODE that models the situation, and instead thought of the Laplace transform method. The 

Laplace method takes the domain and changes to be “s”, a complex variable, instead of time (t). 

The Laplace method is meant to facilitate the solution of this type of exercises, but at the same 

time, it avoids the issue of creating an ODE altogether. Thus, using the Laplace method steered 

Zane away from the initial goal of the task. Its complexities became a problem not only for him 

but for other students who decided to use this strategy to solve the task. On the other hand, the 

exercise taken from a textbook (Palm, 2005), was designed in such a way that students do not 

need to turn to the Laplace strategy to obtain the ODE. 

 After attempting the Laplace transform method, Zane then returned to the task of 

producing an ODE by writing an outline of the potential effects of the components of the circuit 
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in the system. In Figure 33 it can be seen that Zane recognized the relevance of all the elements 

of the system; that is: the currents (is, i1, i2), the components: the capacitor (C), the resistance (R) 

and the inductance (L); and the voltages (v1 and vo) (T2RO01 to T1RO08). With respect to the 

causal nets for this task, Zane could only activate those corresponding to the currents is, i1 and i2 

(T2CN01 to 03) as evidenced in the same picture. 

 Before finishing all his work for this task, Zane referred to the three expressions at the 

bottom of Figure 33:  

“so we could combine these relationships just the same way I am doing here 

[pointing at Laplace equation] in terms of Kirchhoff’s Current Law. It’s just that, since 

they’re time derivatives in voltage and current it’s a little bit harder to manipulate and 

integrate things”. 

What Zane expresses at this point indicates his lack of knowledge to finish his task 

successfully. He was not able to articulate strategies to allow him to coordinate the elements of 

which he already had information from. This is a situation in which it is possible to argue that he 

lacks the possibility to operate a concept projection. His first attempt entailed the tools provided 

by the Laplace method, eventually he tried to use the component-based strategy but he was not 

able to articulate the causal nets T1CN04 to T1CN08. 
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Figure 33. Zane’s drafts for Task 2. 

 
Figure 34. Zane’s flow of reasoning for task 2. 
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 Summary of Zane’s flow of reasoning for Task 2. Zane started this task by trying to use 

the Laplace method but given that he did not have any aid, like a textbook or a sheet of formulas 

to help him go further, he discarded this option. During that process though, he noticed the 

relevance of the elements of the system and thus he proceeded to use the Component strategy that 

allowed him to infer that the system was governed by the Kirchhoff’s Current Law, writing the 

equation shown in T2CN01 to 03 in the figure. However, he had problems to infer the specific 

role of the elements (T2CN04 to 08) not obtaining the desired ODE this time.  

Task 2 – Rebecca 

Obtaining the model of the voltage  was a particular challenge for the participating 

students. Rebecca was probably the student whose final ODE showed the closest resemblance to 

the actual solution of the task. Rebecca initially recognized that the circuit was ruled by the 

Kirchhoff Current Law. From this law the individual may focus on the nodes of the circuit and 

infer that the current entering the node equals the current leaving the node. This indicates T2RO1 

to 03 and T2CN01 to 03 correspondingly. See figure below. 

 

Figure 35. Rebecca’s initial work on Task 2. 
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Figure 36. Rebecca’s diagram of the circuit. 

After writing this initial equation, Rebecca changed the strategy and started to focus on 

the components of the circuit. She did this in an attempt to integrate the results of both strategies 

to be able to obtain a new expression for . She showed some understanding of the effect that 

each component exerted on the system; nevertheless, as it was not enough for her to go further, 

she tried drawing a sketch of the circuit as shown in Figure 36. 

This rearrangement of the circuit allowed Rebecca to see a different perspective of the 

system as a whole and, at the same time, focus on the effect of the components, just as described 

previously, relevance of all the elements in the system: currents, voltages, capacitor, inductance 

and resistance (T1RO01 to T1RO08) as well as the equation taken from KCL: T1CN01 to 03. In 

fact, she tried to articulate what she had found as she used each strategy but her efforts were 

fruitless beyond that point. The figure below shows her last final answer for Task 2. 

 
Figure 37. Rebecca’s final expression. 
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In Rebecca’s case, we might notice her intention to obtain an expression where  is the 

dependent variable, as well as relating it with its derivatives; however, she lacked the elements 

(knowledge) to coordinate her ideas in a way that she could get to the right answer.  

 Summary of Rebecca’s flow of reasoning for Task 2. Rebecca decided to start working 

on the Task using the Diagram strategy and then, almost immediately, the Component strategy. 

At doing this she activated the readouts for all the elements of the system. When these relevant 

elements were identified, she then proceeded to use the Equation strategy in an attempt to obtain 

the ODE. From the equation she could infer some of the effects of the elements but in an 

incomplete way (T2CN04 to 08); in this manner, although she was the one who got closer to a 

proper ODE for the system, she could not obtain that final expression. Specifically, for all the 

students, the role of the inductance (T2CN08) played a significant role to obtain the final 

expression but none of them could accurately infer it form the Task.  
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Figure 38. Rebecca’s flow of reasoning for task 2. 

Task 2 – Harry 

 Similar to the other students, Harry chose to rely on the Laplace method to try to make 

sense of the task and solve the exercise. During the time he spent attempting to find the 

expression for the ODE, he did not use any other strategy. After identifying the governing law in 

the system, KCL, he stated this first equation implying the recognition of T2CN01 to 03 and their 

corresponding causal nets. Figure 39 shows the evidence for this statement. 
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Figure 39. Harry’s evidence of KCL use. 

 As mentioned earlier, Harry did not rely on any other strategy except by Laplace method 

so he tried to make several inferences that came up to be useless to obtain a valid expression. In 

fact, not much can be said about Harry’s work up to this point given that his excerpts did not 

evidence usable elements to imply the proper use of the causal nets expected for this task 

(T2CN01 to T1CN08). Furthermore, his last expression lacked the basic elements expected from 

an ODE for this case; that is, there is no dependent variable or its derivatives as shown in Figure 

40. 

 

Figure 40. Harry’s final expression (ODE). 

 Summary of Harry’s flow of reasoning for Task 2. Harry attempted to use the Equation 

strategy from which he identified some elements of relevance. However, although he had 

identified the governing principle, he did not go much further so he decided to turn to the Laplace 

method in an effort to obtain the final expression. At this moment, it seems like he lost track of 

the process; he could not infer what the role of each element was, and consequently failed to 
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obtain the ODE since this strategy did not allowed him to make the proper inferences or even 

identify the relevant information (T2RO04 to 07 and T2CN04 to 08). 

 

Figure 41. Harry’s flow of reasoning for task 2. 

Task 2 – Josh 

 Similar to Harry, Josh relied on the Laplace method only. At this initial stage, Josh stated 

that the system was governed by the Kirchhoff’s Current Law (KCL). His first attempt to model 
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the system was using the Laplace method. It is worth reminding the reader that the textbook from 

which the tasks were taken assumes that the student is able to model the system without using the 

Laplace method. It means that they are expected to use the relations of the quantity to be 

analyzed with its corresponding derivatives. In Josh’s case, it is hard to even validate the use of 

the readouts expected for this task since he was not successful in the process of obtaining the 

expression. Furthermore, he provided an incomplete equation in the Laplace domain and also, the 

quantity and the relation with the terms in it was represented in terms of an algebraic equation 

instead of a differential equation. It is of course understandable that Josh was trying to work in 

another domain but his only response when he was asked about how he could interpret the 

equation he proposed was: “you’d have to convert it back for it to make physical sense…”. 

 In summary, none of the expected readouts and causal nets were used by Josh in this task. 

On the other hand, his only strategy was that of Laplace method which was of no profit for him 

this time; none of the strategies found in this study was used. His final expression is of algebraic 

composition without any relation between the quantity to analyze and the other parameters as 

shown in Figure 42.  

 

Figure 42. Josh’s final expression. 

 Summary of Josh’s flow of reasoning for Task 2. Josh’s reasoning was very similar to 

that used by Harry. Again, the used the Equation strategy but soon tried to use the Laplace 

method which hindered all the possibilities to go further with the task. He did not see the 

relevance of the elements (T2RO04 to 07) and consequently could not infer the role of these 

elements in the system (T2CN04 to 07). 
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Figure 43. Josh’s flow of reasoning for task 2. 

Task 2 – Kira  

 Kira’s work on this task involved the use of two strategies. In her first attempt she tried to 

analyze the effect of each element of the circuit using the component-based approach (Figure 44). 

In this case, Kira identified the relevance of each element of the system, matching those 
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presented in the readouts table from the conceptual analysis (T2RO01 to 08). On the other hand, 

she recognized that KCL was useful in this task and related the currents as expected.  

 

 Figure 44. Kira’s component-based approach results. 

 Kira’s work in this task was limited as the other interviewees, except by Rebecca. Despite 

the fact that she recognized the elements influencing the system’s behavior she failed to activate 

the causal nets, T2CN04 to T2CN08, that would lead her to obtain the ODE for this task. The 

only exception was the recognition and use of the equation relating the currents which meant an 

initial reasoning to complete the task but was not enough. 

 Summary of Kira’s flow of reasoning for Task 2. Kira decided to analyze each of the 

components of the system (Component strategy). This helped her to see the relevance of the 

elements of the system; furthermore she relied on the equation (Equation strategy) related to the 

governing principle (T2CN01 to 03). However, this was not enough to help her make the 

inferences to obtain the ODE. Although she recognized several aspects of each element, she 

could not make complete inferences that would have led her to provide accurate information (As 

seen on Figure 44). 
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Figure 45. Kira’s flow of reasoning for task 2. 
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Analysis of Students’ Written Work for Task 3 

Task 3 – Zane  

 Zane’s first comment regarding the task is that although harder than the others, it was 

possible to model it in a similar way to the electrical and mechanical systems in terms of 

derivatives of time and explained the analogies between systems, as shown in Figure 46 

 

Figure 46. Zane’s analogies between systems. 

Later on, Zane mentioned that, in general, these kinds of systems were governed by the 

Bernoulli principle, which was represented by the equation he wrote next. See figure below. 

 

Figure 47. Zane’s guiding (Bernoulli) equation. 

 This equation was Zane’s guiding tool along the solution of the task, which he 

successfully finished. His main strategy in this case is what I suggested at the beginning of this 

section, equation-based strategy.  

 

Figure 48. Exclusion of compressibility term from Zane’s equation. 
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One important aspect that is noticeable for all the students is that the fourth term of the 

equation was properly discarded. Even though this readout and consequent causal net were not 

included in the list of expected elements for this task, all of the students were able to make the 

necessary inferences to exclude it from the equation. This element,  implied a compressible 

fluid, as shown in the figure below. 

 The rest of Zane’s reasoning consisted on following the elements of the equation and infer 

what each of these represented to obtain his final expression. He needed to rewrite the three 

remaining elements of his initial expression to complete the assignment, as seen on Figure 49. 

 

Figure 49. Zane’s preliminary equation to obtain the ODE. 

 He could easily determine and infer the role of the flowrate coming into the tank, 

(T3RO01 and T3CN01). On the other hand, qout required a more sophisticated knowledge that 

Zane did not have at that moment although he recognized that this flow came out from an orifice 

at “L”, (T3RO07 and T3CN07). Let us remember that students did not count on any textbook or 

formula sheet to help them in the process, so it is valid to affirm that both the readout and its 

corresponding causal net are properly inferred. Finally, by recognizing that the height (h), the 

area of the tank’s surface (A), height L and the tank itself (readouts T3RO04, 05, 06 and 08) Zane 

inferred the expression for the last term of the equation:  (T3CN04, 05, 06 and 08). The 

coordination of all these elements, both the readouts and causal nets, was possible through the 

equation-based strategy. Figure 50 shows Zane’s final expression. 
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Figure 50. Zane’s ODE for Task 3. 

 One last aspect to mention from Zane’s work is the fact that he was the only one to 

mention the relevance of pa in the task.  This evokes the use of T3RO02 and T3CN02. Zane 

explained the meaning of pa in the system and the reason why it could be discarded, explaining 

that one can assume that the height is so small compared to the changes in atmospheric pressure 

that this parameter does not make any difference in the discharge flowrate. 

 Summary of Zane’s flow of reasoning for Task 3. At the beginning Zane identified the 

readouts from the Task’s statement. He explained what each element meant and the role it played 

in the system. Next, Zane recognized that the fluid system was governed by the Bernoulli’s 

principle and in this way, he wrote the equation of conservation of mass corresponding to this 

type of systems based on the aforementioned principle. Although Figure 51 shows a gray 

rectangle, corresponding to the role of h1, it is not relevant to solve the task. The Equation 

strategy led Zane to use a term related to the compressibility of the fluid which was properly 

discarded from the expression. The Equation strategy allowed Zane, and as we shall see with the 

other students, to make the proper inferences to obtain a valid expression for the ODE of this 

system. 
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Figure 51. Zane’s flow of reasoning for task 3. 

Task 3 – Rebecca 

Rebecca’s reasoning followed a very similar pattern to that followed by Zane. She initially stated 

that this task was guided by the Bernoulli’s principle and thus, she wrote the formula out of 

memory. In the same way, she identified and discarded the term including the variation of 
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pressure since she implied that the task assumed an incompressible liquid. This can be evidenced 

in the picture below. 

 

Figure 52. Rebecca’s preliminary equation excluding the 4th term. 

  Again, in the same way as Zane did, she identified the necessary and relevant elements in 

the task, readouts T3RO03 to 06 and 08; and T3CN03 to 06 and 08, by which she made the 

corresponding inferences to obtain the final expression. All her work was guided by the equation-

based strategy. 

 

Figure 53. Rebecca’s final ODE for task 3. 

It is important to emphasize again that the term involving qout showed some minor 

differences from the solution given in the analysis section. This fact however did not hinder the 

student’s ability to come to the solution. 

Summary of Rebecca’s flow of reasoning for Task 3. This flow of reasoning is very 

similar to that of Zane. There was only a slight difference regarding the way Rebecca described 
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the expression for qout ; in both cases, should the students have the usual aids they had obtained 

the exact expression. Other than that, the Equation strategy served very well to Rebecca. 

 

 
Figure 54. Rebecca’s flow of reasoning for task 3. 
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Task 3 – Harry 

 In order to avoid repetition in the account, it is sufficient to mention that Harry attempted 

to follow the same reasoning evidenced by Rebecca and Zane. However, I focus on two 

important aspects of his work. 

 The first differentiating feature in Harry’s work deals with the fact that he used more than 

one strategy (Equation-based) to solve the task. As part of his initial analysis, Harry used the tank 

as a control volume. A control volume is a closed region used in thermofluids to determine what 

elements produce a change in its volume/mass. In this way, this approach coincides with the FBD 

strategy used in the mechanical task, thus it can be considered a diagram-based strategy to help 

project the concept to analyze. Due to the use of the control volume Harry used T3RO08 and 

T3CN08 to help him make sense of the variation of volume in the tank. 

 There was a second factor in Harry’s work that differed from Zane and Rebecca’s. He did 

not discard the compressibility term from his final answer. Even though he was informed that the 

task assumed water (an incompressible fluid), he replied: 

 Interviewer: Let’s assume it’s water… 

Harry: OK, so assuming it’s water, I don’t know what that would be again, I will just take 
that “beta” all the way to my final answer...” 

 

In this way, Harry decided to keep this term and the figure below, Figure 55, shows his 

final answer. He identified and operated all the readouts and causal nets expected for this task 

except by T3RO02 and T3CN02, which anyway, are not fundamental to come to the final 

answer. However, this additional readout, the recognition of the compressibility factor in the 

equation, was not properly inferred, in other words, the causal net was not properly applied so he 

could have obtained the right final answer. 
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Figure 55. Harry’s final ODE for task 3. 

 
 

Figure 56. Harry’s flow of reasoning for task 3. 

 Summary of Harry’s flow of reasoning for Task 3. The only difference between 

Harry’s flow of reasoning and the previous students implied that besides using the Equation 
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strategy, he also used the Diagram strategy. This strategy helped Harry see how the water level 

(h) changed; he could also identify the corresponding relevant elements and inferences to obtain 

the ODE. In this task, the element that demanded more effort was the expression for qout but 

eventually each student arrived to a valid expression. 

 

Task 3 – Josh 

 

 Summary of Josh’s reasoning for Task 3. The aspect that differentiated Josh’s work 

from the others’ was the term qout. Josh was the only student who did not make any reasoning to 

obtain an expression for this element. On the other hand, Josh, as Harry, used a control volume to 

analyze the change of volume; that is, how h changed in the tank. This corresponds to T3RO08 

and T3CN08.  



www.manaraa.com

 
 

97 
 

 

Figure 57. Josh’s flow of reasoning for task 3. 

With the exception of T3RO07 and T3CN07, those related to the discharge flowrate, Josh 

used all the readouts and causal nets as expected, including the compressibility set of relevant 

information and inference. In the same way as Harry, Josh used both, the equation-based and the 

diagram-based approach. 
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Task 3 – Kira  

 Kira followed an identical reasoning to that of the other interviewees. That is, she used an 

equation-based approach, she recognized and discarded the compressibility factor properly and 

came up with a final equation. However, she showed some confusion trying to operate a causal 

net for the discharge flowrate,  (T3RO07). That is, she showed no evidence of using some 

reasoning that would lead her to obtain an expression for this flowrate (T3CN07), instead she 

combined it with the atmospheric pressure term, as shown in Figure 58. 

 

Figure 58. Kira’s final ODE for task 3 and qout interpretation. 

Even though she had “seen” or perceived that there was a certain relationship between 

these two quantities, she did not have enough information to infer how to obtain an expression 

for q_out. However, at this point, it is not expected that students know these kinds of 

relationships by heart. In fact, in the regular activities during class, even in evaluating activities 

they are provided with a list of relevant equations to help them focus on the important aspects of 

modeling systems, in this case, derive the necessary relations to obtain the ODE that 

characterizes the system.  
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Figure 59. Kira’s flow of reasoning for task 3. 

 Summary of Kira’s flow of reasoning for Task 3. As mentioned earlier, students 

followed a very similar flow of reasoning for Task 3. Kira identified the relevant elements of the 

system and in the process she came up with the Equation strategy which helped her make the 

inferences for each of the elements to the system. She had some difficulties when describing qout; 

for this reason, although she obtained a valid ODE, it is considered not completely accurate, 

which explains the gray hexagon for the ODE. 
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Summary of Results 

 The tables below summarize the strategies used by the students in each task, and how 

close or successful they were at solving the tasks.  

 Table 10 presents what strategy(ies), of the three defined in the Results section, each 

student used in each task. Kira was the student who tried more strategies along the solution of the 

tasks compared to Zane who seemed focused on less approaches but showed better results if we 

look at Table 9.. Zane successfully obtained the ODEs for tasks 1 and 3, the mechanical and fluid 

system respectively. In terms of success rate, Rebecca showed the best results; as Zane she 

obtained correct ODEs for tasks 1 and 3, and she partially succeeded in task 2. Harry and Josh 

showed similar results, both completed task 3 and showed partial progress with task 1. On the 

other hand, Kira could only show good performance in task 3. In fact, this task was the only one 

in which all students successfully obtained an ODE, taking into account the limitations they had 

during the interviews.  

 As stated in the description of the tasks in the Methods section, task 2 was meant to be a 

challenging context for the students. Given that they are mechanical engineering undergraduates, 

they mention this fact during the interviews, that they are not very familiar with these kinds of 

contexts; however, this exercise was informative as for the analysis of the challenges they faced 

when they had to apply similar principles in a novel context, which is the essence of transfer of 

learning.  

 Going back to Table 10, Kira’s results show limitations in her abilities to solve the tasks 

but at the same time, showed efforts to use as many resources as possible to make sense of the 

system’s behavior and attempts to set up the ODEs; this is evidenced along the analysis of the 

result of her tasks. Harry and Josh on the other hand, had little effectiveness not only in the 
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setting up of the ODEs as evidenced in the failure to operate many of their causal nets but also in 

their ability to project different strategies that could have enabled them to show more progress 

with the tasks.  

 Zane and Rebecca seemed comfortable with the tasks in general, except with task 2; In 

those cases, their confidence in the strategies they used to solve the tasks allowed them to project 

the concept contained in 	 	 .  

Table 9. 

 

Summary of strategies used per student per task. 

 

 Zane 

Task # 

Rebecca 

Task # 

Harry 

Task # 

Josh 

Task # 

Kira 

Task # 

Diagram 1,2 2 3 1,3 1,2,3 

Component 2 1,2 1 1,2 1,2 

Equation 3 2,3 2,3 2,3 1,2,3 

 

Table 10. 

 

Summary of success in solving the tasks 

 

 Zane Rebecca Harry Josh Kira 

Task 1 S S PS PS U 

Task 2 U PS U U U 

Task 3 S S S S S 
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CHAPTER 6: DISCUSSION 

 In this section I discuss the results of this study and compare them with the literature 

related to studies on differential equations and the concepts of coordination class. I also discuss 

about the extent to which students relied on mathematical concepts throughout the solution of the 

tasks. Then, I examine in more detail the implications of the use of the strategies students used 

along the tasks.  I discuss the implications of this study with aspects of instruction in differential 

equations and system dynamics classes. In addition, I consider the implications of this study with 

respect to the transfer of learning perspective. Finally I discuss the limitations and implications of 

this study for future research in mathematics education and engineering education. 

Implications for the Coordination Class Theory 

diSessa and Sherin (1998) estimated that it is the causal nets and not the set of readout 

strategies, the core problem in learning physics concepts. In this study I have been able to 

demonstrate that diSessa and Sherin’s conjecture is true; students in general were able to identify 

the elements of information of the systems, even from task 2 despite its difficulty. On the other 

hand, the attempts to project the concept based on the strategies identified as I analyzed students’ 

work seemed to be effective in some cases (Zane and Rebecca), but insufficient in others (Kira). 

Besides, Harry and Josh not only were not as fluent in these strategies when compared to their 

classmates; but also, the ones the used could not enable them to complete the tasks. It seems 

apparent that the concept projection might not be accurate unless the student completely 

understands the implications (inferences) of the elements that he/she uses to eventually obtain the 

information he/she wants to obtain from a certain quantity. 

 Coordination class theory describes intrinsic difficulties that students face when reading 

information from the world. In this study, I intended to provide students different contexts to 
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challenge students’ understanding of the principles underlying each of the systems they had to 

analyze. Given that the participants were all mechanical engineering students, I assumed that they 

would probably have better performance in tasks 1 and 3, mechanical and fluid respectively; the 

electrical system would pose more difficulties for them. Taking this into account, I recall the 

concept of span which relates to the applicability of a concept in different situations. Except by 

Rebecca, all the participants were unable to articulate the concepts of ordinary differential 

equations in task 2. The fact that they were unfamiliar with how the elements interacted in this 

system hindered the possibility to see the differential equation that described that system’s 

behavior. diSessa and Wagner (2005) argue that by partitioning the structure of the coordination 

class - readouts and causal nets among others – might simplify instruction interventions. This 

implies that for learning and teaching matters, coordination class theory might shed light 

regarding how to help students widen their span; that is, the applicability of a concept. In this 

specific case determined for this study: modeling dynamic systems through ordinary differential 

equations. 

 Within the theory of Coordination Classes diSessa and Wagner (2005) state that 

coordination clusters are defined as: “coordination classes that mutually influence each other’s 

development”. The evolution of a coordination class is inherently linked to new understanding of 

the concepts defining it. For example, a better understanding of the concept of force, imply new 

meanings for mass and acceleration. This study included coordination clusters undoubtedly 

contributes to the empirical work that has been developed in the previous years, for example 

Wagner (2006) with the concepts of “expected value”, “sample” and “distribution” in his study 

on the law of large numbers; or Thaden-Koch (2003) with the study on coordinating velocity.  
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Students’ Leaning on Mathematical Concepts 

 This study evidenced the complexity of analyzing this kind of tasks that involve concepts 

from several disciplines (e.g. engineering, physics and mathematics). Our interest is mainly 

focused on the mathematical aspects of the tasks, although sometimes the concepts are tightly 

intertwined.  

 The description of the solution of the tasks from the expert’s point of view refers to 

mathematical aspects from the tasks. In this paragraph I discuss how students leaned on these 

aspects as they worked on the tasks.  In Task 1, all of them properly recognized the relevance of 

the small angle which allowed them to use simpler terms. The appearance of the variable  and 

its derivatives came up implicitly as the students inferred the role of each of the components of 

the system. There were only brief mentions from Zane and Harry to the fact that the pendulum 

mass implies the existence of a second derivative of , which then supposed the fact that the 

solution of the task implied a second order differential equation. On the other hand, every student 

rearranged their final expression to resemble the form of the ODE they were shown in previous 

occasions because that form is potentially helpful in further stages of modeling this kind of 

systems 

 In the case of Task 2 there is little to be mentioned with respect of the mathematical 

influence to obtain the ODE for this system due to the lack of familiarity of students with this 

kind of contexts. As shown in the Results section, all of them were unsuccessful at arriving to a 

valid ODE representation of this system. The only student who was close to finish this task, 

Rebecca, did not have the chance to think of potential tools that would help her go further with 

the task. Mathematically speaking, she was close to get an expression that would eventually need 

derivation and further rearrangements of the terms; however, she failed to recognize the 
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relevance of the node found after the inductor (L) and made the inferences that would have led 

her to that point. On the other hand, those students who turned to use the Laplace method (a 

mathematical tool) found themselves stuck in it and gave up on that strategy; which lead us to 

conclude that, for this Task, there was no evidence that the mathematical tools would make an 

impact in the solution of the Task.  

 In the case of Task 3, the most relevant aspect to note is the fact that all students obtained 

the expression for  by relating it to the change of the volume of the tank, which refers to that 

second step cited by Blanchard et al., (1998). Also, students rearranged the final expression to 

make it similar to that of a standard ODE.  

 In summary, if we think of modelling of dynamic systems as a whole, there are two major 

stages to consider; the first implies representing a real life situation in an ODE, the second entails 

solving that ODE. Taking this into account, the mathematical aspects involved in this process are 

more heavily present at the second stage rather than the first one; however, there is still room for 

analyzing the implications of mathematics in the first stage and this study evidences that there are 

potential aspects that might shed light on the modelling process. 

Students’ Strategies as Concept Projections 

 Earlier I described three strategies that students used to approach the tasks: Diagram-

based, Component-based and Equation-based. In this section I discuss the scope of these 

strategies as well as their relation with the causal nets and readouts. 

 On the one hand, I argue that these strategies can be considered concept projections 

because these entail a set of knowledge and plans in order to apply a certain concept in a given 

context. In this manner, I found that students used these three strategies in different ways and this 

use allowed them to solve the tasks. On the other hand, I consider the effect of these strategies as 
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for whether these facilitated the solution of the problems and also I make mention of what aspects 

were essential to solve each of the tasks. 

 The diagram strategy allowed the students to visualize a holistic perspective of the task. 

As the student has a big picture of the system, it is easier for him/her to identify the elements that 

are playing a role in how the system behaves. This is a deduction process that allows the student 

to narrow down the terms of the ODE. This strategy may not always be useful in certain contexts 

and this is a weakness I identified of it. For example, the electrical system did not allow to use 

this strategy effectively although, recognizing its effectiveness, some students attempted to use it.  

 The component-based strategy on the other hand, allowed the students to focus on the 

individual elements of the system and first focus on their effect in the system to, eventually, 

include it in the overall analysis. Rebecca chose to use this option in Task 1 and the main part of 

her work involved focusing on the task taking into account this strategy. It is worth mentioning 

that students chose to use the strategies unaware of what I currently describe in this study; that is, 

they had no label or identifying way to choose among the strategies, they only decided as they 

solved the tasks. This strategy had a drawback at the moment of putting together all the elements 

that had already been described. In trying to solve Task 2, for example, Rebecca had come to a 

valid analysis of the components, but she gave up on that strategy because she did not make the 

right inference on the effect of one of the components. This last thought implies that, although a 

student might be able to draw different strategies, unless he/she makes the right inferences, 

he/she will be restrained as to how far he/she can work on a given task. However, in the case of 

Rebecca, at least she could identify what aspect of the Task made it difficult to handle. Other 

students used different strategies with similar results.   
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 The equation-based strategy served well in the case of Task 3 although I presume that this 

Task was easily solved using this strategy because there were a few number of elements in the 

system. This strategy had the students identify the terms of the equation with their corresponding 

component in the system. This seems to be a straightforward technique, but as I already 

mentioned, this would not be the case if there were more elements involved. 

 Now, it is important to consider Kira’s case regarding the use of the strategies. She was 

the student who shoed the lower results as she solved the tasks but at the same time, I argue that 

it was because she was resourceful as for the use of those strategies that she could show some 

progress with the tasks. On the other hand, this case confirms what I stated in the last paragraph 

where I argue that no matter how many strategies are used, unless the right causal nets are 

properly deployed, there will be stages of the process in which the student will just get stuck.  

In contrast, I also consider it is worth mentioning Rebecca’s performance at solving Task 

2. Contrary to what happened to Kira in all the Tasks (where she had no productive results), it 

was the use of different strategies that allowed her to show some progress. In this case, this 

evidence might prove my conjecture of the usefulness of the strategies. In Rebecca’s case, the 

combination of strategies allowed to “see” that there was a key aspect in one of the elements of 

the system (the inductor) that would lead her to continue with the solution of the task. 

Unfortunately for her she could not go any further with the task due to the lack of inferences.   

Learning Differential Equations 

In the Literature review chapter I cited Blanchard et al. (1998) discussing about the steps 

of the process of modeling with differential equations. Steps one involved establishing the rules 

or laws that described the quantities to analyze; in step two the student defines the variables and 

parameters to use in the model and the third step focuses on using those relationships between 
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quantities to obtain the equation. When compared with the coordination class theory, it is 

possible to compare steps 2 with the identification of the readout strategies and steps 1 and 3 with 

the operation of the causal nets. Given that Blanchard et al., and other textbooks follow a similar 

pattern to approach the modeling process, this study might shed light on methodologies adopted 

by authors concerning the teaching of differential equations and thus emphasize on strengthening 

students’ skills in these steps. 

 The strategies used by the participants informed about the different ways in which a 

student might approach a task involving the modeling of the differential equation of a system. 

These could be assumed as concept projections of the modeling in different instances. These 

concept projections facilitated to some extent the implementation of the ordinary differential 

equation concept in different contexts. This study has helped identify and define the 

characteristics of these projections. This idea could imply effects on the way that modeling is 

taught in differential equations courses as well as engineering courses dealing with this process. 

It is possible that further studies refine the definition, limitations and scope of these strategies and 

thus help students in understanding and carry out modeling of systems more efficiently. 

Understanding of Students’ Thinking of Differential Equations 

I have also referred to Rasmussen’s framework to interpret students’ understanding and 

thinking of differential equations. Although most of the theory he proposed is not applicable 

within the scope of this study, I consider that it is important to make mention to a specific section 

of his study with respect to part of the students’ results. In his framework, Rasmussen two themes 

involving the difficulties that students usually show when reporting understanding (or the lack of 

it) of differential equations. One of these themes is called: the function-as-solution dilemma 

theme. In this theme, Rasmussen reports that students fail to interpret the solution of a differential 
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equation in terms of a function; they are used to finding the solution of an equation resulting in a 

“number” instead of a family of functions. As the results for two of the students in task 2 

involved expressions closely related to an algebraic equation than a differential equation, in this 

study I have shown evidence that these issues remain in students’ thinking.  

 Implications for Transfer of Learning Processes 

I have also mentioned that coordination class theory, as argued by diSessa and Wagner 

(2005) has a structure whose elements can inform the possibility of transfer. Concept projections 

and span involve enough elements to consider this theory as a valid precursor to study transfer of 

learning processes. A basic conception of transfer allows a yes/no possibility of transferred 

knowledge from one situation to another. In contrast, different perspectives of transfer of learning 

beg the possibility to study this phenomenon from a transitional and evolving point of view. In 

this study I argue that the lack of span in the context of task 2 (electrical system) could be 

considered as an argument in favor to analyze transfer of learning in more detail. There were 

though certain aspects, like the proper use of the readout strategies; that could evidence a partial 

accomplishment of transfer in this context considering the failure in the operation of the causal 

nets as stage in which the completion of the transfer process was not completed. Still, it would be 

necessary to use the proper transfer of learning perspective to provide further details of the 

process. Indeed, the Transfer-In-Pieces perspective (Wagner, 2006) is founded on the 

coordination class theory and could provide a suitable framework in this case. 

 Conclusion  

The research questions of this study focused on the way students applied their knowledge 

in the modeling of system dynamics as well as obtaining information about the resources and 

strategies they used while solving tasks. The figures showing the flow of students’ reasonings in 
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the tasks provided a possible structure of how they approached the tasks and also highlighted the 

difficulties they faced at completing the tasks. On the other hand, the identification of those 

strategies, the concept projections in the context of: Diagrams, Components and Equations, 

offered a suitable framework upon which future studies can have some reference. Along the 

Results section I showed evidence of each of these elements and provided useful information 

concerning possibilities to analyze aspects of transfer of learning at undergraduate level. 
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